【变化检测】基于SNUNeT建筑物(LEVIR-CD)变化检测实战及ONNX推理

主要内容如下:

1、LEVIR-CD数据集介绍及下载
2、运行环境安装
3、SNUNeT模型训练与预测
4、Onnx运行及可视化

运行环境:Python=3.8,torch1.12.0+cu113,onnxruntime-gpu=1.12.0
likyoo变化检测源码https://github.com/likyoo/open-cd
使用情况:代码风格属于openmmlab那套,通过修改配置文件config进行模型选择和训练、环境配置简单、训练速度一般。
训练资源消耗:默认参数配置,且batch_size为8时,显存占用5G左右,RTX4080迭代40000大概1.5小时。
ONNX推理:显存占用5G左右,RTX4080推理耗时约100ms

1 LEVIR-CD数据集介绍

1.1 简介

LEVIR-CD 由 637 个超高分辨率(VHR,0.5m/像素)谷歌地球(GE)图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时态图像具有显着的土地利用变化,尤其是建筑增长。LEVIR-CD涵盖别墅住宅、高层公寓、小型车库、大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新的建筑区域的变化)和建筑衰退。这些双时态图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释者进行注释,然后由另一个进行双重检查以生成高质量的注释。
数据来源https://justchenhao.github.io/LEVIR/
论文地址https://www.mdpi.com/2072-4292/12/10/1662
快速下载链接https://aistudio.baidu.com/datasetdetail/104390/1

1.2 示例

在这里插入图片描述

2 运行环境安装

2.1 基础环境安装

【超详细】跑通YOLOv8之深度学习环境配置1-Anaconda安装
【超详细】跑通YOLOv8之深度学习环境配置2-CUDA安装

创建Python环境及换源可借鉴如下:
【超详细】跑通YOLOv8之深度学习环境配置3-YOLOv8安装

2.2 likyoo变化检测代码环境安装

2.2.1 代码下载

Git:git clone https://github.com/likyoo/open-cd.git
在这里插入图片描述

2.2.2 环境安装
# 1 创建环境
conda create -n likyoo python=3.8
conda activate likyoo

# 2 安装torch
# 方式1:
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
# 方式2:
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113

# 3 验证torch安装是否为gpu版
import torch
print(torch.__version__)  # 打印torch版本
print(torch.cuda.is_available())  # True即为成功
print(torch.version.cuda)
print(torch.backends.cudnn.version())

# 4 安装其他依赖库
cd ./open-cd-main

# 4.1 安装 OpenMMLab 相关工具
pip install -U openmim
mim install mmengine
mim install "mmcv==2.0.0"
mim install "mmpretrain>=1.0.0rc7"  # (本地安装版本为1.2.0)
pip install "mmsegmentation==1.2.2"
pip install "mmdet==3.0.0"

# 4.2 编译安装open-cd
pip install -v -e .

# 5 可能缺少的库
pip install ftfy

3 SNUNeT模型训练与预测

3.1 SNUNeT模型介绍

3.1.1 简介

摘要:变化检测是遥感图像分析中的一项重要任务。它广泛应用于自然灾害监测与评估、土地资源规划等领域。作为像素到像素的预测任务,变化检测对原始位置信息的利用率很敏感。最近的变化检测方法总是侧重于提取深层变化语义特征,而忽略了包含高分辨率和细粒度特征的浅层信息的重要性,这往往导致变化目标边缘像素的不确定性和小目标的判断失误。在这封信中,我们提出了一种用于变化检测的密集连接的孪生网络,即SNUNet-CD(孪生网络和NestedUNet的组合)。SNUNet-CD通过编码器和解码器之间以及解码器和解码器之间的紧凑信息传输,减轻了神经网络深层定位信息的丢失。此外,还提出了用于深度监控的集合通道注意力模块(ECAM)。通过ECAM,可以提炼出不同语义层次的最具代表性的特征,并用于最终的分类。实验结果表明,与其他最先进的(SOTA)变化检测方法相比,我们的方法在许多评估标准上都有很大的改进,并且在精度和计算量之间有更好的折衷。
论文地址https://ieeexplore.ieee.org/document/9355573

3.1.2 模型结构

在这里插入图片描述

3.1.3 实验结果

在这里插入图片描述

3.2 模型训练与预测

3.2.1 修改训练配置文件

(1)选择训练配置
在这里插入图片描述

(2)修改configs\common\standard_256x256_40k_levircd.py
关键修改:输入数据集路径data_root一定要对!!!
batch_size和迭代数量等按自己需要调整,预测为1024大小。
在这里插入图片描述

3.2.2 模型训练与测试
# 训练,--config配置文件+保存文件夹名
python tools/train.py configs/snunet/snunet_c16_256x256_40k_levircd.py --work-dir ./work_dirs/snunet

# 测试==》得到评价指标
python tools/test.py configs/snunet/snunet_c16_256x256_40k_levircd.py  ./work_dirs/snunet/iter_40000.pth

在这里插入图片描述

3.2.3 结果显示
# 测试==》得到结果图
python tools/test.py configs/snunet/snunet_c16_256x256_40k_levircd.py  ./work_dirs/snunet/iter_40000.pth --show-dir tmp_infer

在这里插入图片描述

4 Onnx运行及可视化

4.1 Onnx导出静态和动态文件

(1)修改tools/export.py脚本,导出onnx,复制如下内容【修改了输入尺寸和增加一个动态onnx导出】:

# Copyright (c) Open-CD. All rights reserved.
import argparse
import logging

import torch
from mmengine import Config
from mmengine.registry import MODELS, init_default_scope

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger('opencd')


def main(args):
    # must be called before using opencd
    init_default_scope('opencd')

    config_path = args.config
    checkpoint_path = args.checkpoint
    inputs = args.inputs
    model_name = args.model_name
    model_name_dy = args.model_name_dy

    config = Config.fromfile(config_path, import_custom_modules=True)
    model = MODELS.build(config.model)

    ckpt = torch.load(checkpoint_path)
    state_dict = ckpt['state_dict']
    model.load_state_dict(state_dict, strict=True)
    model.eval()

    input_shape0 = tuple(map(int, inputs[0].split(',')))
    input_shape1 = tuple(map(int, inputs[1].split(',')))
    input0 = torch.rand(input_shape0)
    input1 = torch.rand(input_shape1)
    images = torch.concat((input0, input1), dim=1).to(args.device)
    model.to(args.device)

    # 导出静态onnx
    torch.onnx.export(
        model,
        (images),
        model_name,
        input_names=['images'],
        output_names=['output'],
        verbose=False,
        opset_version=11,
    )

    # 导出动态onnx
    torch.onnx.export(
        model,
        (images),
        model_name_dy,
        input_names=['images'],
        output_names=['output'],
        verbose=False,
        opset_version=11,
        dynamic_axes={
                       "images": {0 :"batch_size", 2: "input_height", 3: "input_width"},
                       "output": {0 :"batch_size", 2: "output_height", 3: "output_width"}
                   }
    )


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', '-c', type=str, default='')
    parser.add_argument('--checkpoint', '-m', type=str, default='')
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument(
        '--inputs',
        '-i',
        type=str,
        nargs='+',
        default=['1,3,1024,1024', '1,3,1024,1024'])
    parser.add_argument('--model-name', '-mn', type=str, default='model.onnx')
    parser.add_argument('--model-name_dy', '-mndy', type=str, default='model_dy.onnx')
    args = parser.parse_args()
    logger.info(args)
    main(args)

运行命令如下【结果生成两个onnx文件】:

python tools/export.py --config configs/snunet/snunet_c16_256x256_40k_levircd.py --checkpoint ./work_dirs/snunet/iter_40000.pth

(2)查看模型结构
https://netron.app/
静态onnx
在这里插入图片描述
动态onnx
在这里插入图片描述

注意:其中的[1,6,1024,1024]表示两个[1,3,1024,1024]堆叠一起输入。

4.2 Onnx运行及可视化

4.2.1 Onnx推理运行

注意:由于LEVIR-CD图像为1024*1024大小,输入改成1024输入。

import os
import cv2
import time
import argparse
import numpy as np
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime-gpu -i https://pypi.tuna.tsinghua.edu.cn/simple
 

class CD(object):
    def __init__(self, onnx_model, in_shape=1024):
        self.in_shape = in_shape  # 图像输入尺度
        self.mean = [0.406, 0.456, 0.485]  # 定义均值和标准差(确保它们与图像数据的范围相匹配)  
        self.std = [0.225, 0.224, 0.229]  # 基于BGR范围的

        # 构建onnxruntime推理引擎
        self.ort_session = ort.InferenceSession(onnx_model,
                                providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
                                if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])

    # 归一化 
    def normalize(self, image, mean, std):  
        # 如果均值和标准差是基于0-255范围的图像计算的,那么需要先将图像转换为0-1范围  
        image = image / 255.0  
        image = image.astype(np.float32)  
        image_normalized = np.zeros_like(image)  

        for i in range(3):  # 对于 BGR 的每个通道  
            image_normalized[:, :, i] = (image[:, :, i] - mean[i]) / std[i]  
        return image_normalized
    

    def preprocess(self, img_a, img_b):
        # resize为1024大小
        
        if img_a.shape[0] != self.in_shape and img_a.shape[1] != self.in_shape:
            img_a = cv2.resize(img_a, (self.in_shape, self.in_shape), interpolation=cv2.INTER_LINEAR)
        if img_b.shape[0] != self.in_shape and img_b.shape[1] != self.in_shape:
            img_b = cv2.resize(img_b, (self.in_shape, self.in_shape), interpolation=cv2.INTER_LINEAR)

        # 应用归一化  
        img_a = self.normalize(img_a, self.mean, self.std)
        img_b = self.normalize(img_b, self.mean, self.std)

        img_a = np.ascontiguousarray(np.einsum('HWC->CHW', img_a)[::-1], dtype=np.single)  # (1024, 1024, 3)-->(3, 1024, 1024), BGR-->RGB
        img_b = np.ascontiguousarray(np.einsum('HWC->CHW', img_b)[::-1], dtype=np.single)  # np.single 和 np.float32 是等价的
        img_a = img_a[None] if len(img_a.shape) == 3 else img_a  # (1, 3, 1024, 1024)
        img_b = img_b[None] if len(img_b.shape) == 3 else img_b
      
        concat_img = np.concatenate((img_a, img_b), axis=1) 
        return  concat_img
    
    # 推理
    def infer(self, img_a, img_b):
        concat_img = self.preprocess(img_a, img_b)  # (1024, 1024, 3)+(1024, 1024, 3) --> (1, 6, 1024, 1024)
        preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: concat_img})[0]  # (1, n, 1024, 1024) 
        if preds.shape[1] == 1:
            out_img = (np.clip(preds[0][0], 0, 1) * 255).astype("uint8") 
        else:
            out_img = (np.argmax(preds, axis=1)[0] * 255).astype("uint8")
        return out_img
    

if __name__ == '__main__':
    # Create an argument parser to handle command-line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, default='weights/model_dy.onnx', help='Path to ONNX model')
    parser.add_argument('--source_A', type=str, default=str('E:/datasets/LEVIR-CD/test/A/test_7.png'), help='A期图像')
    parser.add_argument('--source_B', type=str, default=str('E:/datasets/LEVIR-CD/test/B/test_7.png'), help='B期图像')
    parser.add_argument('--in_shape', type=int, default=1024, help='输入模型图像尺度')
    args = parser.parse_args()

    # 实例化变化检测模型
    cd= CD(args.model, args.in_shape)
    
    # Read image by OpenCV
    img_a = cv2.imread(args.source_A)
    img_b = cv2.imread(args.source_B)

    # 推理+输出
    t1 = time.time()
    out = cd.infer(img_a, img_b)
    print('推理耗时:{}'.format(time.time() - t1))
    
    # 保存结果
    cv2.imwrite('./result/test_7_res.png', out)
    
4.2.2 结果可视化

在这里插入图片描述

4.2.3 进一步处理:

(1)可加入腐蚀膨胀处理,消除一些小白点等区域;
(2)将变化区域绘制在第二期图上,便于观察;

03-16
### OpenCD 技术软件工具概述 OpenCD 是一种开源项目,主要关注于遥感图像变化检测领域。它提供了一套完整的解决方案,用于处理卫星或航空影像的变化检测任务[^1]。具体来说,该项目包含了多种神经网络架构设计以及详细的实现流程。 #### 安装与配置 为了使用 OpenCD 进行开发工作,开发者需要按照官方文档完成环境搭建过程。这通常涉及 Python 软件包依赖项的安装以及其他必要的库文件设置。此外,在嵌入式设备上运行时可能还需要借助其他硬件调试工具来辅助开发和优化性能表现。 #### 源码结构解析 整个项目的源代码被精心组织成多个模块以便于维护和发展新功能特性: - **主干网络** 提供了基础特征提取能力的核心组件定义。 - **Neck 部分** 将来自不同层次的信息融合起来进一步增强表达力。 - **Decoder 组件** 实现最终预测结果生成逻辑的部分。 这些组成部分共同协作完成了从输入数据到输出决策全过程建模需求。 #### ChangerFormer 网络结构特点 ChangerFormer 是其中一个重要的创新点之一,通过引入自注意力机制有效提升了跨时间序列间关联性的捕捉效率。这种新型架构特别适合应用于大规模场景下的细微差异识别挑战情境下。 对于实际应用而言,则可以通过命令行调用方式启动目标平台上的固件烧录服务端口监听进程实例化操作如下所示: ```bash $ openocd -f interface/stlink-v2.cfg -f target/stm32f4x_stlink.cfg ``` 上述脚本片段展示了如何利用 ST-LINK 接口配合 STM32F4 系列微控制器芯片完成在线仿真调试目的[^2]。 另外值得注意的是,在集成开发环境中也可以采用更图形化的界面来进行复杂项目的管理作业。例如结合 Eclipse IDE 平台及其插件扩展支持可以显著提高工作效率并降低学习成本门槛值[^3]。 ### 结论 综上所述,无论是作为科研探索还是工业级部署方案考虑对象来看待,“OpenCD”都展现出了极高的实用价值潜力;而围绕其周边所形成的一系列配套资源同样值得深入挖掘研究下去!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值