
图论 - 特殊的图(仙人掌,竞赛图,弦图)
图论 - 特殊的图(仙人掌,竞赛图,弦图)
繁凡さん
只想当个小透明,就图一乐^q^,希望可以做出一些微小的贡献(目前研究方向:自然语言处理、深度学习中的对抗攻击、元学习,欢迎大佬们来与我交流^0^)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【算法笔记】弦图
弦图对于弦图:最大团 = 最小染色子图:点集和边集都是原图的子集的图诱导子图:是子图,不含其它边团:子图,并且是完全图极大团:不是任何一个团的子图最大团:点数最多的团最小染色:用最少的颜色染给每个点,使相邻点不同色最大独立集:不相邻的最大点集最小团覆盖:最少的团覆盖所有点显然的结论:团数≤色数,最大独立集≤最小团覆盖弦:连接环内两个不相邻的点的边弦图:任意大于三的环都至少有一条弦结论1:弦图的诱导子图是弦图单纯点:设N(v)为v相邻的点集,v为单纯点当且仅当v+N(v)的诱导子原创 2020-10-07 22:10:30 · 588 阅读 · 0 评论 -
【算法笔记】竞赛图(有向完全图)(相关题型总结)
竞赛图(有向完全图)竞赛图也叫有向完全图。每对顶点之间都有一条边相连的有向图称为竞赛图竞赛图的一些简单的性质:竞赛图没有自环,没有二元环;若竞赛图存在环,则一定存在三元环。(如果存在一个环大于三元,那么一定存在另一个三元的小环。)任意竞赛图都有哈密顿路径(经过每个点一次的路径,不要求回到出发点)。图存在哈密顿回路的充要条件是强联通。哈密顿问题中,对于 n 阶竞赛图,当 n 大于等于 2 时一定存在哈密顿通路设 D 为 n 阶有向简单图,若 D 的基图为 n 阶无向完全图,则 D 为 n 阶原创 2020-10-09 17:08:22 · 11608 阅读 · 3 评论