- 博客(16)
- 收藏
- 关注
原创 算法复杂度分析:快与省的智慧
时间和空间复杂度是衡量算法性能的两个核心指标。时间复杂度表示算法执行时间随输入规模的增长趋势,常见类型包括O(1)、O(n)、O(n²)等,分析时关注基本操作执行次数的数量级。空间复杂度衡量算法运行时的内存消耗,重点关注额外使用的存储空间。在算法设计中,通常需要在时间和空间效率之间进行权衡取舍。实际应用中,应避免复杂度超过O(n²)的算法,对于大规模数据(n>10⁶)尤其需要选择O(n)或更优算法。理解复杂度概念有助于在编程时做出更优的算法选择。
2025-07-29 20:56:47
894
原创 进程与线程详解
进程(Process)和线程(Thread)是操作系统中两个非常重要的概念,它们都是程序执行的基本单位,但在系统资源管理、调度方式、通信机制等方面存在显著差异。
2025-07-29 20:17:19
800
原创 RAGFlow:开源RAG引擎深度解析
RAGFlow 是一个基于深度文档理解的开源 Retrieval-Augmented Generation(RAG,检索增强生成) 引擎,旨在通过结合大语言模型(LLM)与外部知识库,提供更准确、可靠且可追溯的问答能力。它通过智能文档解析与检索技术,显著提升了 AI 系统的上下文理解与生成能力,特别适用于需要处理复杂数据格式与高精度问答的场景。以下是关于 RAGFlow 的详细介绍,涵盖其特点、服务、功能、适用场景、技术细节及对 AI 客服助手的帮助与提升。RAGFlow 的核心优势在于其深度文档理解与灵活
2025-07-04 14:51:17
1093
原创 揭秘 Python 魔法方法:让你的对象无所不能
Python魔法方法是双下划线开头和结尾的特殊方法,用于定义类的特定行为,如对象创建、操作和表示。常见方法包括: __new__:对象创建时的第一个方法 __init__:初始化对象属性 __call__:使对象可被调用 其他重要方法按功能分为: 对象表示(__str__、__repr__) 比较操作(__eq__、__lt__) 算术运算(__add__、__mul__) 属性访问(__getattr__、__setattr__) 容器行为(__len__、__getitem__) 上下文管理(__ent
2025-07-02 11:35:52
698
原创 Python闭包陷阱:为何这段代码输出全是300?
这段代码的执行结果是 [300, 300, 300, 300]。原因是Python的延迟绑定闭包特性:列表推导式生成的四个lambda函数都引用同一个变量i,而i在循环结束后最终值为3。当调用这些函数时,它们都计算3 * 100。要解决这个问题,可以在lambda中使用默认参数lambda x, i=i: i * x,这样每个函数会捕获不同的i值,从而得到预期结果[0, 100, 200, 300]。
2025-06-30 16:55:01
711
原创 Python装饰器:让代码更优雅的魔法工具
想象你买了一杯奶茶,想加点“额外功能”,比如加珍珠、椰果,或者加冰。你不用重新做一杯奶茶,只需要在原来的奶茶上“包一层”额外的东西。装饰器在 Python 中就像是给函数或类“加料”的工具,它可以在不改变原函数代码的情况下,增加额外的功能。比如,你有一个函数,本来只是打印“hello”。用装饰器可以让它在打印前记录时间,或者检查用户权限,这些“额外功能”都不需要改动的代码。在 Python 中,装饰器是一个高阶函数。
2025-06-30 10:53:59
994
原创 Python单例模式:5种高效实现方式
单例模式确保类只有一个实例并提供全局访问点。本文介绍了Python实现单例的5种方式:1)装饰器方式,通过字典存储实例;2)元类方式,控制类创建过程;3)类属性方式,利用__new__方法;4)模块级单例,利用Python模块特性;5)线程安全版本,使用锁机制。比较了各方式的适用场景,装饰器简洁通用,元类更灵活但复杂,类属性简单但需注意初始化问题,模块级最简单但不够灵活,线程安全版本适用于多线程环境。核心思想都是通过不同技术手段确保实例的唯一性。
2025-06-30 10:18:50
854
原创 Python深拷贝与浅拷贝:一文彻底搞懂
Python中的拷贝分为浅拷贝(Shallow Copy)和深拷贝(Deep Copy)。浅拷贝仅复制对象的顶层结构,嵌套对象仍与原对象共享引用,内存开销较小,适用于性能敏感场景。深拷贝则递归复制整个对象树,生成完全独立的副本,内存消耗较大但能彻底隔离数据。 关键区别: 浅拷贝(copy.copy()/切片)共享嵌套对象,修改会影响原对象; 深拷贝(copy.deepcopy())完全独立,适合需要隔离数据的场景; 不可变对象(如字符串)在拷贝中行为特殊,修改时会创建新对象。 实际应用时需权衡内存开销与数据
2025-06-26 17:03:01
1099
原创 同步与异步:深入解析四种编程模式
同步 vs. 异步同步:操作按顺序执行,调用方必须等待操作完成才能继续后续任务。执行流程在时间上紧密耦合,顺序可预测。异步:操作被发起后,调用方无需等待其完成,可以继续执行其他任务,结果通过回调、协程或事件循环等方式处理。阻塞 vs. 非阻塞阻塞:调用线程在操作完成前被暂停,无法执行其他任务,线程处于空闲状态。非阻塞:调用线程无需等待操作完成,可继续执行其他任务,结果通常通过轮询或回调获取。同步阻塞:像老式点餐,点完菜傻等,效率最低。同步非阻塞。
2025-06-20 14:02:58
545
原创 数据库MVCC:高效并发背后的秘密
多版本并发控制(MVCC)是数据库管理系统处理并发事务的核心技术。它通过为数据维护多个版本,使并发事务可以高效读写数据而不互相阻塞,提高系统性能。MVCC通过事务ID、时间戳等机制标识数据版本,为每个事务提供数据快照,确保读取一致性。写操作生成新版本,保留旧版本供其他事务读取,并通过垃圾回收清理无用版本。MVCC支持多种隔离级别,在PostgreSQL和MySQL等数据库中各有实现。其优点包括高并发性和一致性保证,但存在存储开销和写冲突等缺点。通俗来说,MVCC就像图书馆保存书籍多个版本,让读者互不干扰地借
2025-06-19 09:50:08
798
原创 关于数据库的并发一致性问题与数据库隔离等级的详细解读
隔离级别脏读不可重复读幻读性能影响读未提交是是是最高读已提交否是是较高可重复读否否是中等串行化否否否最低脏读:看到别人没确认的“草稿”,可能被取消。不可重复读:同一本书,读两次内容变了。幻读:数人头,数着数着多了一个人。隔离级别:从“随便看”(读未提交)到“排队一个一个来”(串行化),隔离越强,数据越可靠,但速度越慢。读未提交:无隔离,性能最高,但一致性最差。读已提交:防止脏读,适合大多数场景。
2025-06-18 17:03:01
453
原创 多头注意力机制的主要应用范围与场景
多头注意力机制的应用范围涵盖自然语言处理、计算机视觉、语音处理、跨模态任务等多个领域,具体场景包括机器翻译、文本生成、图像分类、语音识别、推荐系统等。其核心优势在于高效捕捉序列或空间中的复杂关系,适合处理大规模、复杂的数据任务。通俗来说,它就像一个多才多艺的图书馆团队,能快速从海量信息中提取关键内容,解决各种智能任务。如果你有具体的应用场景想深入了解,欢迎进一步提问!
2025-06-18 10:15:29
337
原创 大模型多头注意力机制的详细解释
多头注意力机制是Transformer架构的核心组件,通过并行计算多个“注意力头”来捕捉输入序列中不同维度的关系。学术上,它基于查询、键、值向量进行数学运算,通过缩放点积和Softmax生成加权表示;通俗来说,就像多个图书管理员分工协作,从不同角度快速查找和整合信息。这种机制能高效处理长距离依赖和多样化关系,优于传统RNN和CNN方法。多头注意力在自注意力、交叉注意力等场景中广泛应用,使大模型能更全面理解输入数据的复杂关联。
2025-06-18 10:06:03
885
原创 python在运行RabbitMQ运行时遇到的坑之一:Stream connection lost: IndexError(‘pop from an empty deque‘)
在运行这段代码时出现了这样的报错:Stream connection lost: IndexError('pop from an empty deque'),但是调试这段代码的时候又没有问题。经过分析,该错误通常由多线程环境下共享的RabbitMQ通道(channel)引发。若问题仍通道是非线程安全的,多线程同时操作会引发。监控RabbitMQ连接状态是否稳定。使用压力测试工具发送并发消息。
2025-02-21 15:19:41
568
原创 使用python关于RabbitMQ的简单运用
需要完成一个智能聊天客服,可以接入微信等模拟人正常的聊天,考虑到业务场景,使用RabbitMQ实现消息队列是比较合适的一个方案,当然还可以选择Kafka、redis消息订阅等。
2025-02-21 15:11:37
1067
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人