MATLAB函数说明(graycomatrix)
参考链接
1、《 基于LBP纹理特征计算GLCM的纹理特征统计量+SVM/RF识别纹理图片》
2、《 graycomatrix 计算(图像)灰度共生矩阵(CLCM)——matlab相关函数说明,很详细》
1、Matlab函数说明:graycomatrix
1.1 灰度共生矩阵的理解
灰度共生矩阵是描述图像纹理特征的一种重要方法,是像素距离和角度的矩阵函数。
它通过计算图像中一定距离和方向的两点灰度之间的相关性,反映图像在方向、间隔、变化幅度及快慢上的综合信息。
对于灰度共生矩阵的理解,需要明确几个概念:方向,偏移量和灰度共生矩阵的阶数。
(1)方向:一般计算过程会分别选在几个不同的方向来进行,常规的是水平方向0°,垂直90°,以及45°和135°;
(2) 步距d:中心像元;
(3)灰度共生矩阵的阶数:与灰度图像灰度值的阶数相同,即当灰度图像灰度值阶数为N时,灰度共生矩阵为N × N的矩阵;
1.2 函数用法
(1)glcm = graycomatrix(I)
(2)glcms = graycomatrix(I,param1,val1,param2,val2,…)
(3)[glcms,SI] = graycomatrix(…)
1.3 函数描述
graycomatrix( ) 先将图像 I 归一化到指定的灰度级,再计算GLCM。
如果I是一个二值图像,那么灰度共生矩阵就将图像转换到二值灰度级(黑和白)。
如果I是一个灰度图像, 那将转换到8灰度级(默认)。
灰度的级数决定了GLCM的大小尺寸,假设灰度级为N,则GLCM的尺寸是N × N。你可以通过设定参数“NumLevels”来指定灰度级数目,还可以通过设置“GrayLimits"参数来设置灰度共生矩阵的转换方式。
(1)glcms = graycomatrix(I) 产生图像I的灰度共生矩阵GLCM。
它是通过计算两灰度值 i,j 在图像 I 中水平相邻的次数而得到的 (你也可以通过调整’ Offsets’ 参数来指定其它的像素空间关系),GLCM中的每一个元素(i,j)代表灰度 i 与灰度 j 在图像 I 中水平相邻的次数。
(2)glcms = graycomatrix(I,param1,val1,param2,val2,…) 返回一个或多个灰度灰度共生矩阵,根据指定的参数对的值。参数可以简写,并且对大小写不敏感。
1.4 参数解释
(1)输入图片的类型
图片 I 可以是数字型或逻辑型,但必须是二维的,实数的,非稀疏的矩阵。SI是一个double型矩阵,它和I的尺寸相同。
(2)偏移量
’Offset’ 一个p*2的整数矩阵,指定了感兴趣像素对之间的距