MATLAB函数说明(graycomatrix)

参考链接

1、《 基于LBP纹理特征计算GLCM的纹理特征统计量+SVM/RF识别纹理图片
2、《 graycomatrix 计算(图像)灰度共生矩阵(CLCM)——matlab相关函数说明,很详细

1、Matlab函数说明:graycomatrix

1.1 灰度共生矩阵的理解

灰度共生矩阵是描述图像纹理特征的一种重要方法,是像素距离和角度的矩阵函数

它通过计算图像中一定距离和方向的两点灰度之间的相关性,反映图像在方向、间隔、变化幅度及快慢上的综合信息。

对于灰度共生矩阵的理解,需要明确几个概念:方向,偏移量和灰度共生矩阵的阶数。
(1)方向:一般计算过程会分别选在几个不同的方向来进行,常规的是水平方向0°,垂直90°,以及45°和135°;
(2) 步距d:中心像元;
(3)灰度共生矩阵的阶数:与灰度图像灰度值的阶数相同,即当灰度图像灰度值阶数为N时,灰度共生矩阵为N × N的矩阵;

1.2 函数用法

(1)glcm = graycomatrix(I)
(2)glcms = graycomatrix(I,param1,val1,param2,val2,…)
(3)[glcms,SI] = graycomatrix(…)

1.3 函数描述

graycomatrix( ) 先将图像 I 归一化到指定的灰度级,再计算GLCM。

如果I是一个二值图像,那么灰度共生矩阵就将图像转换到二值灰度级(黑和白)。
如果I是一个灰度图像, 那将转换到8灰度级(默认)。

灰度的级数决定了GLCM的大小尺寸,假设灰度级为N,则GLCM的尺寸是N × N。你可以通过设定参数“NumLevels”来指定灰度级数目,还可以通过设置“GrayLimits"参数来设置灰度共生矩阵的转换方式。

(1)glcms = graycomatrix(I) 产生图像I的灰度共生矩阵GLCM。
它是通过计算两灰度值 i,j 在图像 I 中水平相邻的次数而得到的 (你也可以通过调整’ Offsets’ 参数来指定其它的像素空间关系),GLCM中的每一个元素(i,j)代表灰度 i 与灰度 j 在图像 I 中水平相邻的次数

(2)glcms = graycomatrix(I,param1,val1,param2,val2,…) 返回一个或多个灰度灰度共生矩阵,根据指定的参数对的值。参数可以简写,并且对大小写不敏感。

1.4 参数解释

(1)输入图片的类型
图片 I 可以是数字型或逻辑型,但必须是二维的,实数的,非稀疏的矩阵。SI是一个double型矩阵,它和I的尺寸相同。

(2)偏移量
’Offset’ 一个p*2的整数矩阵,指定了感兴趣像素对之间的

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值