目标检测中的损失函数

x表示模型的预测,y表示真实值,z=x-y表示预测值与真实值之间的差异

L1_loss

L L 1 = ∣ x − y ∣ = ∣ z ∣ L_{L1}=|x-y|=|z| LL1=xy=z

L2_loss

L L 2 = 1 / 2 ( x − y ) 2 = 0.5 z 2 L_{L2}=1/2(x-y)^2=0.5z^2 LL2=1/2(xy)2=0.5z2

分别对z求导

image-20240119203425289

image-20240119203433190

这样会导致一些问题

​ ** L 1 l o s s : L_1 loss: L1loss:**在训练末期,z很小的情况下,如果不调整learning rate,这个导数的值会使损失函数在稳定值附近波动,难以继续收敛下去。

​ ** L 2 l o s s : L_2loss: L2loss:**在训练初期,z较大的情况下,会导致损失函数不稳定。

Smooth L1 loss

L s m o t t h L 1 = { 0.5 ( x − y ) 2 = 0.5 z 2 , i f ∣ x − y ∣ < 1 ∣ x − y ∣ − 0.5 = ∣ z ∣ − 0.5 , o t h e r w i s e L_{smotthL1}=\left\{ \begin{aligned}0.5(x-y)^2=0.5z^2,&& if|x-y|<1 \\ |x-y|-0.5=|z|-0.5, &&otherwise \end{aligned} \right. LsmotthL1={ 0.5(xy)2=0.5z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值