
elasticsearch
文章平均质量分 66
搞不懂语言的程序员
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
集群恢复,当节点离线导致分片状态为UNASSIGNED时,如何进行分片重分配? 当出现Elasticsearch bulk写入性能瓶颈时,可以从哪些方面进行优化
建议优化顺序:客户端参数 → 索引配置 → 硬件升级 → 架构调整。二、Bulk写入性能优化方案。一、集群分片重分配解决方案。原创 2025-05-27 21:16:27 · 399 阅读 · 0 评论 -
慢查询分析,如何通过_profile API分析查询性能瓶颈?解释返回结果中的各阶段耗时含义
【代码】慢查询分析,如何通过_profile API分析查询性能瓶颈?解释返回结果中的各阶段耗时含义。原创 2025-05-27 21:09:06 · 173 阅读 · 0 评论 -
ES 在大查询场景下导致 GC 频繁,如何定位和解决?
建议优先从查询优化和JVM参数调整入手,同时结合GC日志分析具体GC类型(Young GC/Full GC)和停顿时间。若频繁出现Full GC,需重点检查内存泄漏或大对象分配问题。和垃圾回收器类型(G1/CMS)原创 2025-05-27 21:05:42 · 636 阅读 · 0 评论 -
Elasticsearch 如何实现跨数据中心的数据同步?
RTO则是指从灾难发生到业务系统完全恢复并可以重新提供服务所需的时间。它衡量的是业务中断的时间长度。在你的例子中,RTO<30分钟意味着在灾难发生后,系统能够在30分钟内完全恢复并重新提供服务,从而将业务中断的时间控制在30分钟以内。RPO指的是灾难发生后,系统能够恢复到的数据更新点的时间。简单来说,它衡量的是数据丢失的量。在你的例子中,RPO<5分钟意味着在灾难发生后,系统能够恢复到灾难发生前5分钟内的数据状态,从而确保数据丢失量控制在5分钟以内。(北京->上海 单向同步)(双向同步商品索引)原创 2025-05-27 20:52:57 · 598 阅读 · 0 评论 -
如何设计一个支持千万级数据量的搜索系统(结合 MySQL 和 ES)?ES与关系型数据库(MySQL)数据同步方案?如何保证数据库与Elasticsearch的双写一致性?对比采用事务日志与CDC方案
【代码】如何设计一个支持千万级数据量的搜索系统(结合 MySQL 和 ES)?ES与关系型数据库(MySQL)数据同步方案?如何保证数据库与Elasticsearch的双写一致性?对比采用事务日志与CDC方案。原创 2025-05-27 20:33:03 · 923 阅读 · 0 评论 -
如何通过ES实现SQL风格的查询?
一、Spring项目集成方案。原创 2025-05-27 20:19:58 · 685 阅读 · 0 评论 -
如何设计ES的冷热数据分离架构?Elasticsearch 集群如何实现高可用?如何避免脑裂问题?如果出现脑裂如何恢复?
本文介绍了Elasticsearch的冷热架构设计与高可用方案。冷热架构通过SSD节点组存储近7天热数据,HDD节点组存储历史数据,配合ILM策略实现自动迁移。高可用方案采用多节点组设计,包含主节点组、数据节点组和协调节点组,通过副本策略、分片重平衡和客户端重试机制保障容灾能力。关键配置包括分片分配策略、故障检测和自动恢复机制,确保系统在节点故障时仍能稳定运行。该方案兼顾性能与成本,适用于大规模数据存储场景。原创 2025-05-26 11:31:09 · 651 阅读 · 0 评论 -
ES的Refresh、Flush、Merge操作对性能的影响? ES如何实现近实时(NRT)搜索? ES聚合查询的Terms和Cardinality区别?
Near Real-Time(近实时)原创 2025-05-24 17:25:29 · 542 阅读 · 0 评论 -
ES分片(Shard)和副本(Replica)的作用?如何合理分配?
Elasticsearch分片与Redis Cluster Slot分片对比分析。每个分片的副本(默认 1 个)存储在不同节点,主分片故障时副本自动升级为主分片。副本分片可同时处理搜索请求,支持读写分离(写入只发生在主分片,读取可来自副本)将索引拆分为多个分片(默认 5 个),实现海量数据分布式存储和并行计算。每个分片作为独立的 Lucene 索引,支持并发读写操作,提升吞吐量。单个分片故障不会导致整个索引不可用,其他分片仍可继续提供服务。通过副本复制机制防止数据丢失,建议至少设置 1 个副本。原创 2025-05-24 16:50:26 · 1302 阅读 · 0 评论 -
如何保证 Kafka 数据实时同步到 Elasticsearch?
*** 自定义数据转换器(对应配置中的value.converter)*/// 数据转换入口方法@Overridetry {// 数据清洗:IP地址标准化// 去除空格// 添加清洗标记// 生成数据清洗哈希值。原创 2025-05-24 11:53:37 · 1169 阅读 · 0 评论 -
Elasticsearch 写入性能优化有哪些常见手段?
【代码】Elasticsearch 写入性能优化有哪些常见手段?原创 2025-05-22 21:33:58 · 765 阅读 · 0 评论 -
如何通过 Spring Data Elasticsearch 实现复杂查询(如多条件聚合)?商品搜索场景下,如何设计索引映射?说明字段类型选择依据(text/keyword/nested等)?
实际开发中应结合具体业务需求,通过@Setting注解加载自定义分析器配置,使用@Field注解精确控制字段映射类型,并通过组合BoolQuery实现复杂查询条件。五、索引配置建议(product-settings.json)一、复杂查询实现方案(多条件聚合示例)二、索引映射设计原则(商品模型示例)四、查询构建最佳实践。原创 2025-05-22 21:17:49 · 362 阅读 · 0 评论 -
Elasticsearch 分页查询的 from+size 有什么缺陷?如何优化深度分页?比较scroll API与search_after的差异
性能问题:当from值很大时,Elasticsearch需要遍历大量数据才能找到起始位置,然后返回size条记录,这会导致查询性能下降,尤其是在数据量很大的情况下。合并和排序:协调节点(通常是执行搜索的Elasticsearch节点)会收集所有分片返回的结果,将它们合并成一个全局的结果集,并根据查询中指定的排序规则进行排序。截断和返回:然后,协调节点会从排序后的结果集中截取从from位置开始的size条记录,并将它们返回给客户端。适用场景:适用于数据量不大、实时性要求高的场景。原创 2025-05-22 19:51:55 · 853 阅读 · 0 评论 -
ES的倒排索引和正排索引的区别及适用场景?为什么倒排索引适合全文搜索?
对于Stored Fields,Elasticsearch会维护一个文档ID到磁盘位置的映射表,通过这个映射表可以快速定位到存储该文档字段值的磁盘位置。对于Stored Fields,Elasticsearch会读取整个文档的字段值(如果只需要部分字段,可以在查询时指定)。对于Doc Values,由于其采用列式存储,Elasticsearch会根据文档ID在相应的列中找到对应的字段值。当执行查询时,Elasticsearch会根据查询条件(如文档ID)在索引中查找对应的文档位置。原创 2025-05-21 20:43:04 · 1387 阅读 · 0 评论 -
Elasticsearch简单集成java框架方式。
Elasticsearch 在 Java 中最常用的客户端是什么?Spring Data Elasticsearch 如何定义实体类与索引的映射?(替代旧的 RestHighLevelClient),这是 Elasticsearch 官方维护的最新客户端,支持 7.17+ 版本。旧项目可能仍在使用已被废弃的 High Level REST Client。但是国内相对而言,RestHighLevelClient还是使用比较多的,就跟jdk8一个道理。目前官方推荐使用新的。原创 2025-05-21 10:39:24 · 506 阅读 · 0 评论 -
Elasticsearch 实战面试题,每个题目都会单独解析
Elasticsearch 在 Java 中最常用的客户端是什么?如何初始化一个 RestHighLevelClient?如何用 Spring Boot 快速集成 Elasticsearch?Spring Data Elasticsearch 如何定义实体类与索引的映射?ES的倒排索引和正排索引的区别及适用场景?为什么倒排索引适合全文搜索?Elasticsearch 分页查询的from+size有什么缺陷?如何优化深度分页?比较scroll API与search_after的差异。原创 2025-05-20 11:48:52 · 505 阅读 · 0 评论