PyTorch深度学习实践(2)

这篇博客通过Python代码展示了线性模型的前向传播、损失函数计算以及权重优化过程。作者使用了一个简单的线性数据集,通过迭代更新权重来最小化均方误差(MSE),并绘制了损失函数随权重变化的曲线,直观地说明了权重调整对模型性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B站 刘二大人

2.线性模型

#liu 线性模型
import numpy as np
import matplotlib.pyplot as plt

x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]

def forward(x):
    return x*w
def loss(x,y):
    y_pred=forward(x)
    return (y_pred-y)*(y_pred-y)

w_list=[]
mse_list=[]
for w in np.arange(0.0,4.1,0.1):
    print('w',w)
    l_sum=0
    for x_val,y_val in zip(x_data,y_data):
        y_pred_val=forward(x_val)
        loss_val=loss(x_val,y_val)
        l_sum+=loss_val
        print('\t',x_val,y_val,y_pred_val,loss_val)
    print('MSE=',l_sum/3)
    w_list.append(w)
    mse_list.append(l_sum/3)

plt.plot(w_list,mse_list)
plt.ylabel('loss')
plt.xlabel('w')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值