【算法之LeetCode系列(4)】—— 最大子序列和(easy)

数组最大子序列和

虽然这是一个easy的题目,但是我确实没做出来,我的思路是使用双指针,但是……还是没做出来,下面介绍一下官方提供的动态规划的思路(以下是我根据官方思路讲述的个人想法)

题目描述

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [0]
输出:0
示例 4:
输入:nums = [-1]
输出:-1
示例 5:
输入:nums = [-100000]
输出:-100000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray

思路

动态规划:
以下是我对官方代码的理解
对数组进行遍历,维护两个变量,当前最大子序列和current和最终结果max
遍历数组时,比较current加上即将遍历的数组元素num[i]的结果res与这个数组元素num[i]的大小
如果是res大,说明加上num[i]是对最大和有益的,那就取max和res中的较大者
如果是nums[i]大,说明current小于0,不利于最大和,则直接让current跳到nums[i]的位置,并开始下一次循环
直至循环结束

var maxSubArray = function(nums) {
    let current = 0;
    let max = nums[0];
    for(num of nums){
        let res = current + num;
        current = Math.max(res,num);//比较res和遍历的这个元素的大小
        max = Math.max(current,max);//实时更新max,保证max是最大的
    }
    return res;
};

以下思路为图解算法的题解(文字上,这个作者的话语更加直接,一针见血,很好懂)
作者:guanpengchn
链接:https://leetcode-cn.com/problems/maximum-subarray/solution/hua-jie-suan-fa-53-zui-da-zi-xu-he-by-guanpengchn/
来源:力扣(LeetCode)

这道题用动态规划的思路并不难解决,比较难的是后文提出的用分治法求解,但由于其不是最优解法,所以先不列出来
动态规划的是首先对数组进行遍历,当前最大连续子序列和为 sum,结果为 ans
如果 sum > 0,则说明 sum 对结果有增益效果,则 sum 保留并加上当前遍历数字
如果 sum <= 0,则说明 sum 对结果无增益效果,需要舍弃,则 sum 直接更新为当前遍历数字
每次比较 sum 和 ans的大小,将最大值置为ans,遍历结束返回结果
时间复杂度:O(n)O(n)

var maxSubArray = function(nums) {
    let sum = 0;
    let res = nums[0];
    for(num of nums){
        if(sum > 0){//这个地方和官方那种,本质思路都一样,但是这样写你一看就知道是怎么回事(适合新手)
            sum += num;
        }else{
            sum = num;
        }
        res = Math.max(sum,res);
    }
    return res;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萝卜·

期待大佬们的鼓励与支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值