
数学建模
建模前磨刀
奇迹luanluan
君子不隐其短,不会则问,不能则学
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
mumuisapig
前言:插值算法与拟合算法的思想比较接近。两者的区别:拟合问题中不需要曲线一定经过给定的点,拟合问题的目标在于寻求一个函数(曲线),使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(也叫做最小化损失函数)。在插值算法中,得到的多项式f(x)f(x)f(x)必须经过每一个已知点,如果样本点太多会造成插值多项式太复杂,产生龙格现象。即使使用分段插值的方法固然可以避免龙格现象,但是这样一来为了经过每一个点,多项式的解析式必定十分复杂。但是更多时候,我们更倾向于得到一个确定简洁的曲线(用数学的思维去衡原创 2020-08-17 21:20:50 · 221 阅读 · 0 评论 -
插值算法
【问题】在比赛中,常常需要根据已知的函数点进行数据,模型的处理和分析,而有时候现有的数据又是极少的,不足以支撑分析的进行,这时候就需要使用一些数学的方法,“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。一维插值问题...原创 2020-08-15 14:15:10 · 513 阅读 · 1 评论 -
评价类模型
层次分析法(AHP)优劣距离解法(Topsis)在解决评价类问题之前,首先要确定的三个问题:我们的评价目标是什么?我们为了达到这个目标有哪几种可选的方案?评价的准则或者指标是什么?以及各个指标权重的确定。层次分析法1.确定评价指标根据已有发表的同主题论文,专家的看法。搜索网站:谷歌>百度>微信>知乎2.确定指标的权重分而治之的思想两个两个指标进行比较,最终根据两两比较的结果来推算出权重。【注】两指标比较的重要程度表:(有时候重要性也可解释为满意度).原创 2020-08-12 16:53:44 · 9882 阅读 · 0 评论 -
传染病模型
参考:https://www.zhihu.com/question/367466399?from=groupmessage假定人群分为4种,分别是:SUSCEPTIBLES:易感者,潜在的可感染人群。EXPOSED:潜伏者,已经被感染没有表现出来的人群。INFECTIVES:感染者,已经表现出感染症状的人RESISTANCES:抵抗者,感染者痊愈后获得抗性的人。有些时候可以把R解释成...原创 2020-05-01 16:27:06 · 7952 阅读 · 0 评论 -
建模之多元线性回归分析
关于回归的基础知识1.回归分析用来研究变量X和Y之间的相关性2.Y俗称因变量,即核心变量:连续数值型变量,0-1型变量,定序变量(数字代表了程度),计数变量(到访的次数),生存变量(年龄)。 X为解释变量,Y为被解释变量。3.回归分析的目的:识别重要的解释变量,判断相关性的方向,估计权重(即回归系数)。4.回归分析的分类:5.数据的分类:横截面数据,时间序列数据,面板数据。(本次的多元回...原创 2020-02-23 10:39:49 · 6280 阅读 · 0 评论 -
建模之相关系数
person相关系数及spearman相关系数以“分析八年级男生体测数据”为例一.person相关系数基础知识(概率论与数理统计及matlab):总体均值(E(x)E(y)E(x) E(y)E(x)E(y)),总体协方差(Cov(X,Y)Cov(X,Y)Cov(X,Y)),总体person相关系数(ρ(x,y)\rho(x,y)ρ(x,y)),样本协方差,样本person相关系数。注意:...原创 2020-02-13 21:14:57 · 1756 阅读 · 2 评论 -
假设检验
1.写在前面:用来判断样本与样本,样本与总体之间的差异是有抽样误差引起还是本质差别造成。(抽样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全局指标的绝对离差。)显著性检验是假设检验最常用的一种方法。即先对总体的特征做出某种假设,通过统计推理,对此假设应该被拒绝还是被接受做出推断。常用假设检验的方法:Z检验,t检验,卡方检验,F检验。2.基本思想:...原创 2020-02-13 13:27:38 · 284 阅读 · 0 评论