REINFORCE(REward Increment = Nonnegative Factor × Offset Reinforcement × Characteristic Eligibility)是一种在强化学习中常用的策略梯度算法,用于训练神经网络策略。它是一种基于梯度的方法,直接优化策略的期望回报。
以下是REINFORCE算法的详细介绍:
问题设置:
在强化学习中,一个代理与环境交互以学习一种策略,该策略最大化一定时间内的累积奖励。
目标是学习一种策略,该策略基于观察到的状态选择动作,以最大化期望的累积奖励。
策略梯度方法:
策略梯度方法是一类强化学习算法,直接参数化策略,并在增加期望回报的方向上更新它。
策略梯度方法不是显式地估计值函数,而是直接与策略一起工作,以找到最优策略。
目标函数:
在REINFORCE中,目标是最大化由参数化策略 \thetaθ 给出的期望回报 J(\theta)J(θ)。
期望回报定义为从给定初始状态开始按照策略所获得的奖励的期望总和。
梯度上升:
REINFORCE使用梯度上升来更新策略参数 \thetaθ ,方法是沿着期望回报的梯度方向进行更新。
通过与环境的交互收集的样本来估计期望回报的梯度。
策略梯度定理:
策略梯度定理提供了期望回报相对于策略参数的梯度的公式。
它将梯度表示为与策略下动作的对数概率相关的奖励的总和。
蒙特卡洛估计:
REINFORCE使用蒙特卡洛估计来估计期望回报及其梯度。
它通过与环境的交互收集轨迹,并使用这些轨迹来计算期望回报的无偏估计。
更新规则:
REINFORCE的更新规则如下:
基线:
为了减少梯度估计的方差,REINFORCE通常使用基线。
基线从回报中减去,以减少方差,同时保持梯度估计的无偏性。
优缺点:
优点:REINFORCE实现简单,适用于各种问题,无需对环境进行建模。
缺点:由于梯度估计的方差高,收敛速度较慢且不稳定。
扩展:
对REINFORCE进行了各种扩展,以解决其局限性,包括Actor-Critic方法、Trust Region Policy Optimization (TRPO)和Proximal Policy Optimization (PPO)等技术。
总的来说,REINFORCE是强化学习中的一种基本算法,为许多现代策略梯度方法奠定了基础。尽管它很简单,但由于其效果和可解释性,它仍然具有重要意义。