
Pytorch基础
文章平均质量分 77
PyTorch是一个开源深度学习框架,由Facebook开发并维护,以动态计算图和灵活性著称。它支持Python和C++,以易用的界面和强大的自动微分功能,帮助用户构建、训练和调试神经网络。PyTorch提供丰富的工具,包括张量操作、高效GPU加速和模块化神经网络库,适用于研究与生
日晨难再
一个想设计芯片的人,目前研二在读,持续学习中。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pytorch基础:Tensor索引会导致创建新张量
本文来源于博主无意之中的一个发现,当对tensor进行相同的索引操作时,每次返回的tensor对象的id值不同;对于一般的列表,每次返回的对象id值应该是相同(即意味着每次都是返回同一个对象)。原创 2025-06-21 14:14:20 · 409 阅读 · 0 评论 -
Pytorch基础:Tensor的detach方法
在Pytorch中,detach是Tensor的一个重要方法,用于返回一个脱离了计算图的张量,它的语法如下所示。原创 2024-10-15 14:33:41 · 1853 阅读 · 0 评论 -
Pytorch基础:设置随机种子
有时候,如果需要代码在多个运行中具有可重复性,可以通过以下方式来设置随机种子:原创 2024-10-13 23:30:24 · 1905 阅读 · 2 评论 -
Pytorch基础:Tensor的连续性
在Pytorch中,一个连续的张量指的是张量中各数据元素在底层的存储顺序与其在张量中的位置一致。这意味着每一个元素的地址可以通过下面的线性映射公式来确定:原创 2024-07-30 15:28:45 · 1314 阅读 · 0 评论 -
Pytorch基础:Tensor的view方法(非连续张量也可以使用view)
在Pytorch中,view是Tensor类的一个重要方法,用于返回一个改变了形状,但数据和数据的顺序与原来一致的新张量,但是新张量需要与原张量共用底层存储(称为视图)。原创 2024-07-27 18:33:19 · 1831 阅读 · 0 评论 -
Pytorch基础:Tensor的squeeze和unsqueeze方法
在Pytorch中,squeeze和unsqueeze是Tensor类的一个重要方法,同时它们也是torch模块中的一个函数,它们的语法如下所示。原创 2024-07-26 21:32:43 · 2228 阅读 · 0 评论 -
Pytorch:显卡驱动版本、Pytorch版本的关系
显卡驱动程序一般是显卡自带的,可以在终端中使用nvidia-smi命令查看,如下图所示。原创 2024-07-18 01:29:34 · 2709 阅读 · 0 评论 -
Pytorch基础:torch.cuda.set_device函数
torch.cuda.set_device函数用于设置当前使用的cuda设备,在当拥有多个可用的GPU且能被pytorch识别的cuda设备情况下(环境变量CUDA_VISIBLE_DEVICES可以影响GPU设备到cuda设备的映射)。原创 2024-05-13 17:06:23 · 6577 阅读 · 0 评论 -
Pytorch基础:环境变量CUDA_VISIBLE_DEVICES
CUDA_VISIBLE_DEVICES这个环境变量可以影响CUDA能识别到的GPU,并影响它映射到的cuda设备编号。原创 2024-05-13 00:00:15 · 4196 阅读 · 3 评论 -
Pytorch基础:torch.load_state_dict()方法在加载时不会检查类型
笔者在使用torch.nn.module的load_state_dict中出现了一个问题,一个被注册的张量在加载后居然没有变化,一开始以为是加载出现了问题,但发现其他参数加载成功,思索后发现是注册的张量的类型是整型而checkpoint中保存为浮点数类型,恰好注册时的默认值给的是0,而checkpoint中的浮点数又在0到1之间,因此出现了这个令人困惑的bug。原创 2024-04-27 20:58:20 · 1424 阅读 · 0 评论 -
Pytorch基础:张量相关的乘法(torch.mul、torch.mv、torch.matmul、torch.mm、torch.bmm、torch.dot、torch.tensordot、*、@)
Pytorch中含有很多种张量乘法,本文旨在帮助理解它们的不同。下面将分小节进行详细阐述,包括torch.mul、torch.matmul、torch.mm、torch.bmm、torch.dot、torch.tensordot、*、@。原创 2024-04-16 00:30:39 · 2579 阅读 · 0 评论 -
Pytorch基础:标量(零阶张量)
在PyTorch中,标量(Scalar)是一种只包含单个数值的零阶张量,它是只有一个元素的张量(注意:只有一个元素的张量并不一定是张量)。标量在深度学习中非常常见,通常用来表示损失函数的值、模型参数的值或其他单一数值。原创 2024-04-14 21:29:30 · 822 阅读 · 0 评论 -
Pytorch基础:Tensor的flatten方法
在Pytorch中,flatten是Tensor类的一个重要方法,同时它也是一个torch模块中的一个函数,它们的语法如下所示。原创 2024-03-08 20:42:45 · 3166 阅读 · 0 评论 -
Pytorch基础:Tensor的permute方法
在Pytorch中,permute是Tensor类的一个重要方法,同时它也是一个torch模块中的一个函数,它们的语法如下所示。官方的解释是:返回原始张量输入的视图,并对其维度进行转置。原创 2023-10-06 17:20:30 · 3786 阅读 · 0 评论 -
Pytorch基础:Tensor的transpose方法
在Pytorch中,transpose是Tensor类的一个重要方法,同时它也是torch模块中的一个函数,它们的语法如下所示。原创 2023-10-02 14:32:27 · 5105 阅读 · 0 评论 -
Pytorch基础:Tensor的reshape方法
在Pytorch中,reshape是Tensor类的一个重要方法,它与Numpy中的reshape类似,用于返回一个改变了形状但数据和数据顺序和原来一致的新Tensor对象。注意:此时返回的新tensor中的数据对象并不一定是新的,这取决于应用此方法的Tensor是否是连续的。原创 2023-10-01 14:04:32 · 11452 阅读 · 0 评论