便利蜂(Bianlifeng)作为中国领先的数字化连锁便利店品牌,自创立以来始终坚持“用科技改变零售”的核心理念,致力于为城市消费者提供便捷、高效、高品质的日常消费服务。依托大数据驱动与人工智能算法深度融合的运营体系,便利蜂构建起覆盖多个重点城市的智能化门店网络,形成了以区域管理中心为枢纽、标准化门店为基础、移动应用与自助服务为延伸的新型零售服务生态。
门店作为便利蜂线下服务的核心节点,不仅是销售食品饮料、日用百货、鲜食快餐等高频消费品的重要场所,更是实现用户行为分析、动态定价优化、库存智能调度与即时配送协同的关键数据入口。每一家便利蜂门店均采用统一的视觉识别系统与数字化管理系统,注重购物环境的整洁性、安全性和科技感,广泛部署自助收银机、智能货架、远程巡店系统等技术设施,持续提升运营效率与顾客体验。
本文将探讨如何通过程序化方式,利用 POST 请求调用公开接口,从便利蜂官方服务平台获取门店分布数据。通过 Python 的 requests 库发送 HTTP 请求,解析返回的 JSON 结构化数据,提取门店编码(shopCode)、门店名称、所属城市与行政区(cityName, districtName)、详细地址、地理坐标(lng, lat)、营业时间(openFrom / openTo)以及服务功能(如是否支持外卖、自提、会员服务)等关键字段,实现对门店信息的自动化采集与结构化存储,该数据集可广泛应用于分析便利蜂的城市拓展策略、门店密度分布规律、商圈覆盖能力及城乡服务渗透水平等课题。例如,结合人口密度、交通流量、写字楼分布等外部数据,可建模评估新店选址潜力;通过时间序列分析门店增减趋势,可洞察企业战略重心的区域迁移。此类研究不仅为新零售行业的空间布局优化提供实证支持,也为智慧社区建设、城市便民服务规划与即时零售生态发展提供有力的数据参考。
便利蜂门店查询网址:便利蜂
首先,我们找到门店数据的存储位置,然后看3个关键部分标头、负载、 预览;
标头:通常包括URL的连接,也就是目标资源的位置;
负载:对于POST请求:负载通常包含了传递的参数,因为所有参数都通过URL传递,这里我们可以看到城市的编码,没有进行加密;
预览:指的是对响应内容的快速查看或摘要显示,可以帮助用户快速了解返回的数据结构或内容片段,我们可以看到数据在data里;