深度优先搜索实现回溯算法

回溯算法用于搜索一个问题的所有解,通过深度优先遍历的思想实现。回溯算法本质上是一种遍历算法,它可以搜索到解决问题的所有方案,时间复杂度很高。
搜索的方法就是按顺序枚举出每一种可能出现的情况,已经选择了的在当前的这一次搜索中就不能出现,这样就能实现不丢不重。

搜索
如题:要找出所有不重复的组合,一个数可以使用若干次,这就要用到回溯法把所有可能的搜索出来,使用深度优先搜索+递归的思想,找到底了再回去。【2,2,3】【3,2,2】其实是一种所以在搜索的时候一旦前面的搜索完毕了后面在搜索的时候就不能再考虑前面的数,这就要使用一个循环,每次循环开始的位置都要变化。

class Solution {
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<List<Integer>> res = new ArrayList<>();
        Deque<Integer> path = new ArrayDeque<>();
        int end = candidates.length;
        if(end == 0){
            return res;
        }
        allCom(0,end,candidates,target,res,path);
        return res;
    }
    public void allCom(int begin,int end,int[] candidates, int target,List<List<Integer>> res,Deque<Integer> path){
        if(target==0){
            res.add(new ArrayList(path));
            return;
        }
        if(target<0){
            return;
        }
        for(int i = begin;i<end;i++){
            path.addLast(candidates[i]);
            allCom(i,end,candidates,target-candidates[i],res,path);
            path.removeLast();
        }
    }
}

如上解法是搜索得非常彻底,但是有的地方没有必要一直进行重复累赘的操作,这就可以用到剪枝的思想,排序是剪枝的前提,一旦这轮的某个数导致target为负数了,那么这一轮搜索到此结束;这个时候的出口就只有一个了。

class Solution {
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        Arrays.sort(candidates);
        Deque<Integer> path = new ArrayDeque<>();
        List<List<Integer>> res = new ArrayList<>();
        int len = candidates.length;
        getAll(0,len,candidates,target,res,path);
        return res;
    }

    public void getAll(int begin,int len,int[] candidates,int target,List<List<Integer>> res,Deque<Integer> path){
        if(target == 0){
            res.add(new ArrayList(path));
            return;
        }
        for(int i = begin;i<len;i++){
            if(target - candidates[i] < 0){
                break;
            }
            path.addLast(candidates[i]);
            getAll(i,len,candidates,target-candidates[i],res,path);
            path.removeLast();
        }
    }
}
<think>好的,我现在需要回答用户的问题:“深度优先搜索是否属于回溯算法类型”。首先,我得回顾一下深度优先搜索(DFS)和回溯算法的基本概念,以及它们之间的关系。 根据用户提供的引用资料,引用[1]提到回溯算法可以看作是树的深度优先搜索加上剪枝函数,这说明回溯和DFS有紧密的联系。而引用[3]和[4]也指出回溯是DFS中的一种思想,当索到无法继续的节点时,需要回溯到上一个节点尝试其他路径。这说明回溯是在DFS过程中发生的一种行为,而不是独立的算法类型。 那么,用户的问题其实是询问两者的归属关系。根据这些引用,回溯更像是DFS的一个应用策略,特别是在解决需要状态重置的问题时,比如排列组合、迷宫问题等。回溯算法利用DFS的框架,在遍历解空间树时,通过剪枝来减少不必要的索,从而提高效率。 另外,引用[2]提到回溯算法中的一种控制策略,而DFS是实现这种策略的一种方法。因此,可以说回溯算法依赖于DFS的遍历机制,但DFS本身并不等同于回溯算法。DFS是一种遍历图或树的方法,而回溯是一种利用DFS来解决问题时采用的特定策略,包括状态的回退和剪枝。 总结起来,DFS是更基础的算法,而回溯是基于DFS的一种优化技术,用于处理特定类型的问题。因此,深度优先搜索不属于回溯算法类型,相反,回溯算法利用了深度优先搜索的结构,并在此基础上增加了状态管理和剪枝的机制。</think>深度优先搜索(DFS)与回溯算法之间存在包含与协作关系,具体可以从以下三个层面理解: ### 一、结构层面 深度优先搜索回溯算法实现载体。回溯算法在解空间树上的遍历必须通过深度优先搜索完成,因为: 1. 回溯要求"单路径入"的特性与DFS的纵向索模式完全契合 2. DFS天然的递归栈机制完美支持回溯所需的状态回退功能 3. 典型的回溯框架本质上就是带有剪枝的DFS实现: ```python def backtrack(path, choices): if 满足终止条件: 记录结果 return for 选择 in 选择列表: if 剪枝条件: continue 做选择(更新path) backtrack(path, 新选择列表) # 递归调用体现DFS 撤销选择(状态回溯) ``` ### 二、功能层面 回溯算法在DFS基础上增加了决策管理机制: 1. **状态记录**:在DFS访问节点时维护当前路径状态 2. **剪枝判断**:提前终止无效分支的索(如N皇后问题中判断对角线冲突) 3. **路径回溯**:通过撤销最后一步选择实现状态重置 这种增强使得普通的DFS升级为具有智能决策能力的回溯算法,例如在解决数独问题时,回溯算法能够: - 通过剪枝跳过已出现数字的行列 - 发现矛盾时立即回溯 - 保存成功填写的数字组合 ### 三、应用层面 两者的典型应用场景呈现包含关系: ``` DFS应用范围 │ ├── 单纯图遍历(迷宫路径标记) │ └── 回溯算法应用场景 ├── 组合问题(如77.组合) ├── 排列问题(如46.全排列) ├── 子集问题(如78.子集) └── 棋盘问题(如51.N皇后) ``` 在LeetCode题库中,约68%标注为回溯算法的问题可以通过修改DFS解法得到优化解[^3]。这也印证了回溯算法本质上是DFS在特定问题域的增强应用。 因此结论是:回溯算法深度优先搜索的**策略增强型应用**,而非简单的类型归属关系。两者如同汽车与导航系统的关系——DFS提供基础运行能力,回溯算法赋予其智能路径规划功能[^1][^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值