模板-warmup

为了防止模型训练过程中不收敛,可以在训练过程中进行warmup

from keras.callbacks import Callback
import keras.backend as K


class Evaluate(Callback):
    def __init__(self):
        self.F1 = []
        self.best = 0.
        self.passed = 0
        self.stage = 0

    def on_batch_begin(self, batch, logs=None):
        """
        第一个epoch用来warmup,不warmup有不收敛的可能。
        """
        if self.passed < self.params['steps']:
            lr = (self.passed + 1.) / self.params['steps'] * 1e-3
            K.set_value(self.model.optimizer.lr, lr)
            self.passed += 1

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zxxsid

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值