剑指offer 专项突破版 99、最小路径之和

这篇博客讨论了一种动态规划的算法,用于求解从原点到二维网格中任意点的最小路径和。通过设置f(i,j)表示到达(i,j)的最小代价,并利用状态转移方程f(i,j)=min{f(i-1,j),f(i,j-1)}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

思路
  • 这道题和上到题类似,设f(i,j)为从原点走到坐标为(i,j)的地点的最小路径
  • 因此有f(i,j)=min{f(i-1,j),f(i,j-1)}+cost(i,j)
  • 对于边界值,就是从开头到现在的累加和
  • 同样可以用一个数组保存~
class Solution {
    public int minPathSum(int[][] grid) {
		int[] dp = new int[grid[0].length];
        dp[0] = grid[0][0];
        for(int i = 1 ; i < dp.length ; i++){
			dp[i] += dp[i-1] + grid[0][i];
        }

        for(int i = 1 ; i < grid.length ; i++){
            dp[0] += grid[i][0];
            for(int j = 1 ; j < grid[0].length;j++){
                dp[j] = Math.min(dp[j-1],dp[j]) + grid[i][j];
            }
            System.out.println(Arrays.toString(dp));
        }

        return dp[grid[0].length-1];
    }
}

/*
	f(i,j) = min{f(i-1,j),f(i,j-1)}+grid[i][j]
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值