MIT 6.5840-分布式系统 Lab1

总结

MapReduce
  • MapReduce是一种用于处理和生成大规模数据的一种算法模型。对于输入数据, 用户指定一种 MapFunc 则可以生成一个个键值对(称作 intermediate) , 这一过程被叫做 Map。对于Intermediate, 用户指定一种 Reduce Function,则可以根据Intermediate 的 key 对Intermediate 进行合并归类, 这一过程被叫做 Reduce

  • 注意点:

    • 每个map任务会输出多个文件,每个文件中的intermediate经过hash函数取余后值是一样的。由于Reduce任务需要对所有key一样的intermediate执行Reduce Function,所以必须在coordinator中对所有map woker上报的文件进行处理,确保分配给一个reduce woker的所有文件其对应的hash取余是一样的

    • 所有map任务执行结束后reduce任务才能执行

实现思路
woker

woker比较简单,一直从coordinator获取任务,根据任务类型进行不同的操作,任务完成后把消息上报

func Worker(mapf func(string, string) []KeyValue,
	reducef func(string, []string) string) {
   
   
	for {
   
   
		task := getTask()
		switch task.TaskType {
   
   
		case TaskNone:
			myLog("receive done signal, worker exist")
			return
		case TaskSleep:
			time.Sleep
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值