在RTX50系显卡上部署videolingo和GPT-SoVITS的完整指南

前言

本人使用的是5070卡,买来就是为了使用videolingo的,结果根据官方教程一通配置下来各种报错。。。最终历时几个晚上一步步排错解决,以下是一点点笔记,希望能帮助到你。

1、安装cuda,tensorRT和pytorch

首先我是按照官方安装完毕,然后运行报这个。

videolingo翻译和生成字幕报错内容:
FATAL: this function is for sm80, but was built for sm370
FATAL: this function is for sm80, but was built for sm370
FATAL: this function is for sm80, but was built for sm370
FATAL: this function is for sm80, but was built for sm370

对于NVIDIA Blackwell架构的显卡,需要使用最新版本的cuda-12.8,同时tensorRT也需要最新版本TensorRT 10.8,对应pytorch也需要使用没有发布的开发版本+cu128.

cuda安装:
CUDA Toolkit 12.8 Downloads

tensorRT安装
TensorRT 10.x Downloads

pytorch安装
记得需要在虚拟环境(官方版本环境下)安装PyTorch (nightly版本,支持CUDA 12.8)

pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128

等待安装完毕。。。

2、解决Whisper报错问题

到这里,你已经成功了一半了,只要环境配对,翻译和生成字幕就可以了,但是在使用Whisper语音识别阶段,还是会报错,回报一个weights_only=true的错,我们下一步需要改代码了。报错截图如下:在这里插入图片描述

根据报错找到文件,就是调用load函数这个地方

在这里插入图片描述

我的是在MyDesktop\videoling-2o\VideoLingobylicor250220\miniconda\envs\videolingo\lib\site-packages\lightning_fabric\utilities\cloud_io.py

修改这个文件的torch.load里面参数weights_only=false

在这里插入图片描述

即可成功解决。

在这里插入图片描述

gpt-sovits记得下载官方给的兼容50卡的版本,我是gst官方下的,,但现在我也没找到兼容50卡的v2版本也可以官方下v4版本,下面的是我当时下的需要自取,里面模型记得替换下。
我用夸克网盘分享了「GPT-SoVITS-v2-20250228-nvidia50.rar」
链接:https://pan.quark.cn/s/abf38803f19e

3、使用videolingo

使用的话非常简单,直接设置个LLM大模型即可,可以试试这个api中转 薛定猫AI,里面有290+大模型且都比官方便宜,gpt全系列,gemini全系列,claude全系列,想用哪个模型即切即用。注册即送0.4刀,够用几个十几分钟的视频了,配置就配置个url,还有网站上提供的模型名称,和 自己的私钥即可。
在这里插入图片描述

配图是后续在b站找的大佬魔改版,一样用的。
在这里插入图片描述

### 下载安装 GPT-SoVITS 为了成功下载并安装 GPT-SoVITS,建议按照以下指南操作: #### 准备工作 确保计算机配置满足最低需求,特别是对于 GPU CUDA 的支持。推荐使用带有至少 12GB 显存的 NVIDIA RTX3060 或更高级别的显卡以及相应的 CUDA 版本[^4]。 #### 步骤一:获取代码库 通过 Git 命令行工具克隆最新的 GPT-SoVITS GitHub 仓库至本地机器上: ```bash git clone https://github.com/RVC-Boss/GPT-SoVITS.git ``` #### 步骤二:准备预训练模型文件 利用 Hugging Face CLI 来下载由 `lj1995` 发布于 Hugging Face 上的预训练权重文件,并将其放置在指定路径下: ```bash huggingface-cli download --resume-download --local-dir-use-symlinks False lj1995/GPT-SoVITS --local-dir GPT_SoVITS/pretrained_models ``` 这一步骤会将所需的预训练模型保存到项目的 `pretrained_models` 文件夹内[^2]。 #### 步骤三:设置虚拟环境 (可选) 虽然不是强制性的,但是强烈建议创建一个新的 Python 虚拟环境来管理依赖项。这样可以避免与其他项目发生冲突。 ```bash python -m venv gptsovits_env source gptsovits_env/bin/activate # Linux/MacOS gptsovits_env\Scripts\activate # Windows ``` #### 步骤四:安装必要的软件包 进入刚刚克隆下来的 GPT-SoVITS 目录,并执行 pip install . 进行依赖关解析与安装。 ```bash cd GPT-SoVITS pip install . ``` 完成上述所有步骤之后,应该已经准备好运行 GPT-SoVITS 应用了。如果遇到任何问题,请查阅官方文档或社区资源寻求进一步的帮助支持[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值