2020牛客国庆集训派对day3 Leftbest

本文介绍了一种使用C++标准库中的vector容器结合lower_bound函数实现动态插入排序的方法,并通过累加每次插入位置后的元素值来计算特定和值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路

将数据存在容器vector中(方便插入排序)
利用函数lower_bound()二分快速查找应该插入的位置插入进行排序及大于当前数的最小数进行求和。

T了几发
一开始用的for()查找应该插入的位置,和sort()排序
第一次用函数lower_bound()
wa了几发
因为可能有相等的数,而lower_bound()是二分查找>=的数

#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline ll read() {
    char c = getchar();
    ll x = 0, f = 1;
    while (c < '0' || c > '9') {
        if (c == '-')f = -1;
        c = getchar();
    }
    while (c >= '0' && c <= '9') {
        x = x * 10 + c - '0';
        c = getchar();
    }
    return x * f;
}
int s;
vector<int> q;
ll ans=0;
int main()
{
    int n;
    n=read();
    s=read();
    q.push_back(0);
    q.push_back(s);
    for(int i=2;i<=n;i++)
    {
        s=read();
        if(s>=q[i-1])q.push_back(s);//大于之前输入的数直接q末尾插入ans+=0
        else
        {
            vector<int>::iterator t=lower_bound(q.begin() ,q.end() , s);//在容器中寻找>=s的
            while(*t<=s)t++;//寻找>s的
            ans+=*t;
            q.insert(t,s);//插入s排序
            //printf("%d : %d  ",i,*t);
            //for(int j=1;j<=i-1;j++)
            //{
            //    if(q[j]>s){ans+=q[j];q.insert(q.begin()+j,s);break;}
            //    if(q[i-j]<=s){ans+=q[i-j+1];q.insert(q.begin()+i-j+1,s);break;}
            //

        }
         //for(vector<int>::iterator it=q.begin();it!=q.end();it++){cout<<*it<<"  ";}
         //printf("\n");//遍历容器检查排序是否正确
    }
    printf("%lld\n",ans);
    return 0;
}

内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
### 关于2020寒假算法基础集训营中的欧几里得算法 在2020年的寒假算法基础集训营中,确实存在涉及欧几里得算法的相关题目。具体来说,在第四场竞赛的第一题即为“A. 欧几里得”,该题目的核心在于利用扩展欧几里得定理来解决问题[^5]。 #### 扩展欧几里得算法简介 扩展欧几里得算法主要用于求解形如 ax + by = gcd(a, b) 的线性不定方程的一组特解(x,y),其中gcd表示最大公约数。此方法不仅能够计算两个整数的最大公因数,还能找到满足上述条件的具体系数x和y。 对于给定的数据范围较小的情况可以直接通过递归来实现;而对于较大数据则需考虑效率优化问题。下面给出了一段基于C++语言编写的用于解决此类问题的模板代码: ```cpp #include<bits/stdc++.h> #define int long long using namespace std; // 定义全局变量存储结果 int x, y; void ex_gcd(int a, int b){ if(b == 0){ x = 1; y = 0; return ; } ex_gcd(b, a % b); int tmp = x; x = y; y = tmp - (a / b) * y; } ``` 这段程序实现了经典的扩展欧几里得算法逻辑,并且可以作为处理类似问题的基础工具函数调用。 #### 实际应用案例分析 回到原题本身,“A. 欧几里得”的解答思路就是先预处理斐波那契数列前若干项数值存入数组`a[]`内以便快速查询,之后针对每一次询问直接输出对应位置处两相邻元素之和即可得出最终答案。这实际上巧妙运用到了广为人知的裴蜀定理——任意一对互质正整数都可由它们自身的倍数组合而成,而这里正是借助了这一性质简化了解决方案的设计过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值