求最大公约数(C语言实现)

博客介绍了求最大公约数的两种方法,辗转相除法通过除数和余数反复做除法运算,当余数为0时取当前除数为最大公约数;更相减损法是用大数减小数并辗转相减,若两数为偶数可先约简。还给出了具体示例及后续代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求最大公约数有多种方法,接下来我对辗转相除法更相减损法分别做介绍。

辗转相除法: gcd(a,b) = gcd(b,a mod b)。

假如,需要求 1997 和 615 两个正整数的最大公约数,用辗转相除法,是这样进行的:
1997 / 615 = 3 (余 152)
615 / 152 = 4(余7)
152 / 7 = 21(余5)
7 / 5 = 1 (余2)
5 / 2 = 2 (余1)
2 / 1 = 2 (余0)
至此,最大公约数为1
除数余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。

更相减损法:

举例:
例1:用更相减损术求98与63的最大公约数。(一奇一偶)
解:由于63不是偶数,把98和63以大数减小数,并辗转相减:
98-63=35
63-35=28
35-28=7
28-7=21
21-7=14
14-7=7
所以,98和63的最大公约数等于7。

例2、用更相减损术求260和104的最大公约数。(两个偶数)
解:由于260和104均为偶数,首先用2约简得到130和52,再用2约简得到65和26。
此时65是奇数而26不是奇数,故把65和26辗转相减:
65-26=39
39-26=13
26-13=13
所以,260与104的最大公约数等于13乘以第一步中约掉的两个2,即1322=52。

代码实现如下:

#include<stdio.h>

//辗转相除法
int gcd1(int x, int y)
{
	//判断x/y余数是否为0
	int z = x % y;

	//直到余数为0,则跳出循环
	while(z)
	{
		//循环过程中,将除数给x,余数给y,求新的余数z
		x = y;
		y = z;
		z = x % y;
	}
	//除数y为最大公约数
	return y;
}

//更相减损术
int gcd2(int x, int y)
{
	int sum1 = 1;
	//先判断 x y是否都是偶数
	while ((x % 2 == 0) && (y % 2 == 0))
	{
		sum1 *= 2;
		x = x / 2;
		y = y / 2;
	}

	while (1)
	{
		//保证,被减数大于减数,不然就交换顺序
		if (x < y)
		{
			int temp = x;
			x = y;
			y = temp;
		}

		//差放在s中
		int s = x - y;
		//判断差 和 减数 是否相等,如果是,跳出循环。
		if (y == s)
			break;
		else
		{
			x = y;
			y = s;
		}
	}
	//最大公约数就是约掉的若干个2的积与第二步中等数(减数=差)的乘积
	return y * sum1;
}

int main()
{
	int a = 98;
	int b = 63;
	int max1 = gcd1(a, b);
	int max2 = gcd2(a, b);
	printf("%d  %d的最大公约数为 %d\n", a, b, max1);
	printf("%d  %d的最大公约数为 %d\n", a, b, max2);
	return 0;
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值