动态规划————最大子数组和

53. 最大子数组和

难度简单5094

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23
思路

这道题使用动态规划,

核心方程。

dp[i]=Math.max(nums[i],dp[i-1]+nums[i]);

你可以这样想,之前累加的值加上我自身,还没有我自身大,那么说明还不如我自己单干。

然后就是这样的dp[i] 最后一个并不是最大,因为这个核心方程,dp 数组的每个元素代表的是累加到它自身的累加最大值

比如 2 -3 第一个dp元素最大值是 2 第二个是-1 。可能你会疑问,可以跳过不要-3直接取2,但是这是连续的啊,怎么可能跳过,所以每次统计最大值,保证最后是最大值

题目算法代码如下

class Solution {
    public int maxSubArray(int[] nums) {
        if (nums==null||nums.length==0){
            return 0;
        }
            int []dp=new int[nums.length];
               dp[0]=nums[0];
               int res=nums[0];
        for (int i = 1; i < nums.length; i++) {
            dp[i]=Math.max(nums[i],dp[i-1]+nums[i]);
            res=dp[i]>res?dp[i]:res;
        }
             return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值