基于知识图谱的西安旅游景点推荐系统机器学习算法

随着信息技术的飞速发展,特别是在人工智能领域的持续突破,知识图谱作为一种高效的知识表示与推理工具,在众多领域都逐渐展现出其巨大的应用价值。在旅游领域,尤其是西安这座历史悠久、旅游资源丰富的城市,知识图谱技术的应用能够极大地丰富游客的旅行体验,帮助游客更深入地了解各个景点的历史背景、文化内涵以及相互之间的关联。本项目致力于打造一个基于西安旅游景点的知识问答与推荐系统,借助知识图谱技术,实现对西安众多景点及相关信息的高效查询与智能问答,从而为游客提供精准、便捷的知识检索和个性化推荐服务。

西安作为古都,拥有众多历史悠久、文化底蕴深厚的旅游景点,如兵马俑、古城墙、大雁塔等。然而,这些景点数量众多,且背后蕴含的历史文化信息错综复杂,对于游客来说,在有限的时间内选择适合自己的景点游览无疑是一个不小的挑战。因此,本项目旨在通过构建一个全面、准确的知识图谱,将西安的景点、历史事件、文化人物等关键信息以结构化的方式呈现出来,为游客提供一个直观、易用的查询和推荐工具。

在系统设计与实现过程中,我们采用了Flask框架作为系统的核心,该框架以其轻量级、易扩展的特点,非常适合用于构建小型到中型的Web应用。同时,为了构建高质量的知识图谱,我们融合了多种前沿技术,包括自然语言处理(NLP)、信息抽取、图数据库等。通过这些技术,我们能够自动地从各类旅游资料中提取出关键信息,并将其转化为知识图谱中的节点和边。在知识图谱构建完成后,我们进一步开发了智能问答与推荐模块。该模块能够基于用户输入的自然语言问题,通过语义解析和图谱查询,快速返回准确的答案以及个性化的景点推荐。例如,用户可以询问“西安有哪些适合亲子游的景点?”系统能够立即在知识图谱中查找到相关信息,并给出“兵马俑适合让孩子了解古代军事文化,陕西历史博物馆可以让孩子领略丰富的文物历史等”这样的明确回答及推荐。

此外,在知识图谱的基础上,我们还开发了一个基于LangChain、大模型和PyQt的旅游景点推荐助手。该助手利用LangChain框架和大模型的强大能力,结合PyQt的图形用户界面,为用户提供了一个更加直观、交互式的推荐体验。用户可以通过图形界面输入自己的需求,系统将结合知识图谱中的信息和大模型的推理能力,生成个性化的推荐结果,并通过PyQt界面展示给用户。

我们还对系统进行了全面的测试和优化,以确保其在实际应用中的稳定性和高效性。测试结果表明,该系统能够准确地回答用户关于西安旅游景点及相关信息的各种问题,且响应速度较快,用户体验良好。

本项目成功构建了一个基于知识图谱的西安旅游景点推荐系统,该系统不仅为游客提供了一个便捷的知识检索和景点推荐工具,也为旅游服务的数字化转型和智能化升级提供了新的思路和方法。未来,我们将继续完善系统功能,优化用户体验,并探索其在更多城市旅游中的应用可能性。

旅游景点检索 

用户可通过输入特定的景点名称或相关关键词,如“华清宫”“历史”等,系统借助自然语言处理模型精准解析用户意图,利用Neo4j图数据库的强大查询功能,快速检索出与该景点直接相关的临近景点信息,涵盖自然景观、人文古迹、现代娱乐等多种景点类型,并以直观的图表或清晰的列表形式呈现给用户,帮助用户迅速把握景点之间的关联脉络,满足用户对特定景点周边信息的查询需求。

旅游景点推荐 

用户可采用自然语言形式,如提问华清宫临近哪里?等问题,系统凭借 LTP 模型精准理解问题的核心要点和语义内涵,结合知识图谱中海量的数据信息,精准、快速地回答用户问题,并可根据问题的复杂程度,提供相关的背景信息、情节延伸等内容,实现与用户的智能互动,为用户提供深度、精准的知识解答,充分满足用户在旅游过程的各种疑问解答需求。

旅游推荐助手 

用户可采用自然语言形式,如提问推荐几个好玩的西安旅游景点?等问题,系统基于 LangChain、大模型结合 PyQt 的图形用户界面,生成个性化的推荐结果,为用户提供更加直观、交互式的推荐体验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值