
模糊学习以及歧义
文章平均质量分 94
____Dream
从来就没有什么救世主,也没有神仙皇帝
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【FMMT】基于模糊多模态变压器模型的个性化情感分析
模糊学习,嵌入transformer中原创 2025-05-13 23:10:32 · 1037 阅读 · 0 评论 -
【RMA】基于知识注入和模糊学习的多模态歧义分析
多模态情感分析(MSA)利用互补的多模态特征来预测情感极性,主要涉及语言、视觉和音频三种模态。现有的多模态融合方法主要考虑不同模态的互补性,而忽略了模态之间的冲突所导致的歧义(即文本模态预测积极情绪,视觉模态预测消极情绪)。为了减少这些冲突,我们开发了一种新的多模态歧义学习框架,即RMA,通过知识注入解决多模态歧义和用于多模态情感分析的歧义学习。具体来说,我们引入和过滤外部知识来增强跨模态情感极性预测的一致性。原创 2024-11-09 01:41:03 · 1296 阅读 · 0 评论