1128 N Queens Puzzle (20 分)(测试点二分析)

该博客内容涉及八皇后问题的解决方案验证。给定一个棋盘配置,通过判断皇后是否在同一行或对角线上来确定是否符合解的要求。示例中给出了4个测试用例,分别返回了YES和NO的结果,表明程序能够正确判断解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The “eight queens puzzle” is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - “Eight queens puzzle”.)
在这里插入图片描述

Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens’ solution.

8q.jpg 9q.jpg
Figure 1 Figure 2
Input Specification:
Each input file contains several test cases. The first line gives an integer K (1<K≤200). Then K lines follow, each gives a configuration in the format "N Q ", where 4≤N≤1000 and it is guaranteed that 1≤Q i ≤N for all i=1,⋯,N. The numbers are separated by spaces.

Output Specification:
For each configuration, if it is a solution to the N queens problem, print YES in a line; or NO if not.

Sample Input:

4
8 4 6 8 2 7 1 3 5
9 4 6 7 2 8 1 9 5 3
6 1 5 2 6 4 3
5 1 3 5 2 4

结尾无空行
Sample Output:

YES
NO
NO
YES

结尾无空行

简单的逻辑判断,如果存在皇后在同一行,说明是不行的,如果在同一条对角线上,说明也是不行的,这里需要注意,在同一条对角线的判断条件是 abs(a[i] - a[t]) == abs(i - t) 意思是一个等腰直角三角形就不行啦,如果是测试点二没过,可能没有考虑到这个条件

#include<iostream>
#include<bits/stdc++.h>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<deque>
#include<unordered_set>
#include<unordered_map>
#include<cctype>
#include<algorithm>
#include<stack>
using namespace std;

int main() {
	int n;
	cin >> n;
	while (n--) {
		int k;
		cin >> k;
		int a[k];
		set<int> st;
		bool flag = true;
		cin >> a[0];
		st.insert(a[0]);
		for (int i = 1; i < k; i++) {
			cin >> a[i];
			if (st.count(a[i])) {
				flag = false;
			}
			st.insert(a[i]);
			for (int t = 0; t < i; t++) {
				if (abs(a[t] - a[i]) == abs(t - i)) {
					flag = false;
				}
				if (!flag) {
					break;
				}
			}
		}
		if (!flag) {
			cout << "NO" << endl;
		} else {
			cout << "YES" << endl;
		}
	} 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_努力努力再努力_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值