The “eight queens puzzle” is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - “Eight queens puzzle”.)
Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens’ solution.
8q.jpg 9q.jpg
Figure 1 Figure 2
Input Specification:
Each input file contains several test cases. The first line gives an integer K (1<K≤200). Then K lines follow, each gives a configuration in the format "N Q ", where 4≤N≤1000 and it is guaranteed that 1≤Q i ≤N for all i=1,⋯,N. The numbers are separated by spaces.
Output Specification:
For each configuration, if it is a solution to the N queens problem, print YES in a line; or NO if not.
Sample Input:
4
8 4 6 8 2 7 1 3 5
9 4 6 7 2 8 1 9 5 3
6 1 5 2 6 4 3
5 1 3 5 2 4
结尾无空行
Sample Output:
YES
NO
NO
YES
结尾无空行
简单的逻辑判断,如果存在皇后在同一行,说明是不行的,如果在同一条对角线上,说明也是不行的,这里需要注意,在同一条对角线的判断条件是 abs(a[i] - a[t]) == abs(i - t) 意思是一个等腰直角三角形就不行啦,如果是测试点二没过,可能没有考虑到这个条件
#include<iostream>
#include<bits/stdc++.h>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<deque>
#include<unordered_set>
#include<unordered_map>
#include<cctype>
#include<algorithm>
#include<stack>
using namespace std;
int main() {
int n;
cin >> n;
while (n--) {
int k;
cin >> k;
int a[k];
set<int> st;
bool flag = true;
cin >> a[0];
st.insert(a[0]);
for (int i = 1; i < k; i++) {
cin >> a[i];
if (st.count(a[i])) {
flag = false;
}
st.insert(a[i]);
for (int t = 0; t < i; t++) {
if (abs(a[t] - a[i]) == abs(t - i)) {
flag = false;
}
if (!flag) {
break;
}
}
}
if (!flag) {
cout << "NO" << endl;
} else {
cout << "YES" << endl;
}
}
return 0;
}