1126 Eulerian Path (25 分)(20分分析)

本文探讨了图论中的Euler路径和Euler电路的概念,如何通过输入边的连接情况判断一个无向图是否为Eulerian(欧拉图)、Semi-Eulerian(半欧拉图)或non-Eulerian(非欧拉图)。通过实例解析和代码实现,帮助读者理解相关算法并应用于实际问题中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:
Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:
For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph – either Eulerian, Semi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6

结尾无空行
Sample Output 1:

2 4 4 4 4 4 2
Eulerian

结尾无空行
Sample Input 2:

6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6

结尾无空行
Sample Output 2:
2 4 4 4 3 3
Semi-Eulerian
结尾无空行
Sample Input 3:

5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3

结尾无空行
Sample Output 3:

3 3 4 3 3

结尾无空行

如果你是得了 20 分,那么是因为少考虑到了一个点,那就是图必须全部是联通的,不能存在某个点是孤立的情况,所以必须深搜一边,判断是否是联通的,如果不是联通的,需要输出 no 那个选项。

degree 是度的意思

#include<iostream>
#include<bits/stdc++.h>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<deque>
#include<unordered_set>
#include<unordered_map>
#include<cctype>
#include<algorithm>
#include<stack>
using namespace std;
const int maxn = 501;
vector<int> v[maxn];
bool vis[maxn] = {0};
void Dfs(int x) {
	if (vis[x]) {
		return;
	}
	vis[x] = true;
	for (int i = 0; i < v[x].size(); i++) {
		if (!vis[v[x][i]]) {
			Dfs(v[x][i]);
		}
	}
}
int main() {
	int n, m;
	cin >> n >> m;
	int a[n + 1];
	memset(a, 0, sizeof(a));
	for (int i = 0; i < m; i++) {
		int x, y;
		cin >> x >> y;
		v[x].push_back(y);
		v[y].push_back(x);
		a[x]++;
		a[y]++;
	}
	int count = 1;
	int odd_num = 0;
	bool flag = true;
	Dfs(1);
	for (int i = 1; i < n; i++) {
		if (vis[i]) {
			count++;
		}
	}
	for (int i = 1; i <= n; i++) {
		if (i == 1) {
			cout << a[i]; 
		} else {
			cout << " " << a[i];
		}
		if (a[i] % 2 != 0) {
			flag = false;
			odd_num++;
		}
	}
	cout << endl;
	if (flag && count == n) {
		cout << "Eulerian";
	} else {
		if (odd_num == 2 && count == n) {
			cout << "Semi-Eulerian";
		} else {
			cout << "Non-Eulerian";
		}
	}
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_努力努力再努力_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值