A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
figBST.jpg
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index, provided that the nodes are numbered from 0 to N−1, and 0 is always the root. If one child is missing, then −1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
结尾无空行
Sample Output:
58 25 82 11 38 67 45 73 42
结尾无空行
不是很难的一个题,只要细心 30 不是问题,使用 vector 二维存储树形结构,存储的是编号,然后定义数组 value 存储值,中序遍历就是左根右,最后层序遍历广搜即可。
#include<iostream>
#include<bits/stdc++.h>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<deque>
#include<unordered_set>
#include<unordered_map>
#include<cctype>
#include<algorithm>
#include<stack>
using namespace std;
const int N = 101;
vector<int> tree[N];
int value[N];
vector<int> v;
int index1 = 0;
void inorder(int x) {
if (x != -1) {
inorder(tree[x][0]);
value[x] = v[index1++];
inorder(tree[x][1]);
}
}
int t = 0;
void levelorder(int root) {
queue<int> qu;
qu.push(root);
while (!qu.empty()) {
int val = qu.front();
if (!t) {
cout << value[val];
t = 1;
} else {
cout << " " << value[val];
}
qu.pop();
if (tree[val][0] != -1) {
qu.push(tree[val][0]);
}
if (tree[val][1] != -1) {
qu.push(tree[val][1]);
}
}
}
int main() {
int n;
cin >> n;
for (int i = 0; i < n; i++) {
int l, r;
cin >> l >> r;
tree[i].push_back(l);
tree[i].push_back(r);
}
for (int i = 0; i < n; i++) {
int x;
cin >> x;
v.push_back(x);
}
sort(v.begin(), v.end());
inorder(0);
levelorder(0);
return 0;
}