数字图像处理——第三章 灰度变换与空间滤波

目录

引言

3.1 背景知识

3.1.1 灰度变换和空间滤波基础

3.2 一些基本的灰度变换函数

3.2.1 图像反转

3.2.2 对数变换

 3.2.3 幕律(伽马)变换

3.2.4 分段线性变换函数

 3.3 直方图处理

3.3.1 直方图均衡

3.3.2 直方图匹配(规定化)

 3.3.3 局部直方图处理

3.3.4 在图像增强中使用直方图统计

3.4 空间滤波基础

3.4.1 空间滤波机理

 3.4.2 空间相关与卷积

 3.5 平滑空间滤波器

3.5.1 平滑线性滤波器

3.6 锐化空间滤波器

3.6.2 使用二阶微分进行图像锐化——拉普拉斯算子

3.8 使用模糊技术进行灰度变换和空间滤波


引言

术语空间域指图像平面本身, 这类图像处理方法直接以图像中的像素操作为基础。换域的图像处 理首先把一幅图像变换到变换域,在变换域中进行处理, 然后通过反变换把处理结果返回到空间域。 空间域处理主要分为灰度变换和空间滤波两类。

3.1 背景知识

3.1.1 灰度变换和空间滤波基础

本节讨论的所有图像处理技术都是在空间域进行的,空间域就是简单的包含图像像素的平面。通常,空间域技术在计算上更有效, 且在执行上需要较少的处理资源。本这讨论的空间域处理可由下式表示:

g(x, y) = T[f(x, y)]。

其中f(x,y)是输入图像g(x,y)是处理后的图像, T是在点(x,y)的邻域上定义的关千f的一种算子。

3.2 一些基本的灰度变换函数

3.2.1 图像反转

得到灰度级范围为[0, L-1]的一幅图像的反转图像, 该反转图 像由下式给出:

s=L-1-r 

使用这种方式反转一幅图像的灰度级, 可得到等效的照片底片。

3.2.2 对数变换

对数变换的通用形式为:

s = c log(l + r) 

其中c是一个昭攻, 并假设r>=0。

基本的灰度变换函数

 3.2.3 幕律(伽马)变换

幕律变换的基本形式为:s =cr^{\gamma },其中e和\gamma为正常数。也写为s= c(r+\varepsilon)^{\gamma } 。

不同值的s=c产曲线切f有情况c=1

 用于校正这些幕律响应现象的处理称为伽马校正。


3.2.4 分段线性变换函数

分段函数的主要缺点是它的技术说明要求用户输入。

对比度拉伸:最简单的分段线性函数之一是对比度拉伸变换。低对比度图像可由照明不足 、 成像传感器动态门范围太小,甚至在图像获取过程中镜头光圈设置错误引起。对比度拉伸是扩展图像灰度级动态范阶的处理因此,它可以跨越记录介质和显示装嚣的全部灰度范围。

灰度级分层:突出图像中特定灰度范围的亮度通常是重要的, 通常称之为灰度级分层的处理可以有许多方法实现, 但是它们中的大多数 是两种基本方法的变形。 一种方法是将感兴趣范围内的所有灰度值显示为一个值(替如 “白色” ), 而将其他灰度值显示为另一个值(替如 “黑色” )。

比特平面分层:像素是由比特组成的数字。代替突出灰度级范围. 我们可突出特定比特来为整个图像外观作出贡献。 这一处理可帮助我们确定用于品化该图像的比特数的充分性。

 3.3 直方图处理

灰度级范围为[0, L-1] 的数字图像的直方图是离散函数h(r_{k} )= n_{k} , 其中 r_{k} 是第 K 级灰度值,n_{k}
是图像中灰度为r_{k}的像素个数。在实践中,经常用乘积MN表示的图像像素的总数除它的每个分量来归一化直方图,通常M和 N是图像的行和列的维数。因此,归一化后的直方图由 p(r_{k})=n_{k}/MN给出,其中k=0, 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值