目录
引言
术语空间域指图像平面本身, 这类图像处理方法直接以图像中的像素操作为基础。换域的图像处 理首先把一幅图像变换到变换域,在变换域中进行处理, 然后通过反变换把处理结果返回到空间域。 空间域处理主要分为灰度变换和空间滤波两类。
3.1 背景知识
3.1.1 灰度变换和空间滤波基础
本节讨论的所有图像处理技术都是在空间域进行的,空间域就是简单的包含图像像素的平面。通常,空间域技术在计算上更有效, 且在执行上需要较少的处理资源。本这讨论的空间域处理可由下式表示:
g(x, y) = T[f(x, y)]。
其中f(x,y)是输入图像g(x,y)是处理后的图像, T是在点(x,y)的邻域上定义的关千f的一种算子。
3.2 一些基本的灰度变换函数
3.2.1 图像反转
得到灰度级范围为[0, L-1]的一幅图像的反转图像, 该反转图 像由下式给出:
s=L-1-r
使用这种方式反转一幅图像的灰度级, 可得到等效的照片底片。
3.2.2 对数变换
对数变换的通用形式为:
s = c log(l + r)
其中c是一个昭攻, 并假设r>=0。

3.2.3 幕律(伽马)变换
幕律变换的基本形式为:s =,其中e和
为正常数。也写为s= c(r+
)
。

用于校正这些幕律响应现象的处理称为伽马校正。
3.2.4 分段线性变换函数
分段函数的主要缺点是它的技术说明要求用户输入。
对比度拉伸:最简单的分段线性函数之一是对比度拉伸变换。低对比度图像可由照明不足 、 成像传感器动态门范围太小,甚至在图像获取过程中镜头光圈设置错误引起。对比度拉伸是扩展图像灰度级动态范阶的处理因此,它可以跨越记录介质和显示装嚣的全部灰度范围。
灰度级分层:突出图像中特定灰度范围的亮度通常是重要的, 通常称之为灰度级分层的处理可以有许多方法实现, 但是它们中的大多数 是两种基本方法的变形。 一种方法是将感兴趣范围内的所有灰度值显示为一个值(替如 “白色” ), 而将其他灰度值显示为另一个值(替如 “黑色” )。
比特平面分层:像素是由比特组成的数字。代替突出灰度级范围. 我们可突出特定比特来为整个图像外观作出贡献。 这一处理可帮助我们确定用于品化该图像的比特数的充分性。
3.3 直方图处理
灰度级范围为[0, L-1] 的数字图像的直方图是离散函数h( )=
, 其中
是第 K 级灰度值,
是图像中灰度为的像素个数。在实践中,经常用乘积MN表示的图像像素的总数除它的每个分量来归一化直方图,通常M和 N是图像的行和列的维数。因此,归一化后的直方图由 p(
)=
/MN给出,其中k=0, 1