离散化
适用情况:数据可取范围很大,但实际取到的数量却很少。
第一步先将需要离散化的数值排序去重
sort(alls.begin(), alls.end()); // 排序
erase(unique(alls.begin(), alls.end()), alls.end()) // 去重
第二步利用二分找到每个值在数组排第几个然后返回值
int find(int x){
int l = 0, r = alls.size() - 1;
while(l < r){
int mid = (l + r) / 2;
if(alls[mid] < x){
l = mid + 1;
}else{
r = mid;
}
}
return r + 1;
}
问题描述
假定有一个无限长的数轴,数轴上每个坐标上的数都是0。
现在,我们首先进行 n 次操作,每次操作将某一位置x上的数加c。
接下来,进行 m 次询问,每个询问包含两个整数l和r,你需要求出在区间[l, r]之间的所有数的和。
输入格式
第一行包含两个整数n和m。
接下来 n 行,每行包含两个整数x和c。
再接下里 m 行,每行包含两个整数l和r。
输出格式
共m行,每行输出一个询问中所求的区间内数字和。
数据范围
−109≤x≤109,
1≤n,m≤105,
−109≤l≤r≤109,
−10000≤c≤10000
代码:
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
typedef pair<int, int> PII;
vector<int> alls;
vector<PII> adds, p;
int find(int x){
int l = 0, r = alls.size() - 1;
while(l < r){
int mid = (l + r) / 2;
if(alls[mid] < x){
l = mid + 1;
}else{
r = mid;
}
}
return r + 1;
}
int a[300010];
int s[300010];
int main()
{
int n, m;
cin >> n >> m;
int x, c;
for(int i = 0; i < n; ++i){
cin >> x >> c;
alls.push_back(x);
adds.push_back({x, c});
}
int l, r;
for(int i = 0; i < m; ++i){
cin >> l >> r;
p.push_back({l, r});
alls.push_back(l);
alls.push_back(r);
}
sort(alls.begin(),alls.end());
alls.erase(unique(alls.begin(), alls.end()), alls.end());
for(auto item: adds){
a[find(item.first)] += item.second;
}
for(int i = 1; i <= alls.size(); ++i){
s[i] = s[i - 1] + a[i];
}
for(auto item: p){
int l = find(item.first);
int r = find(item.second);
cout << s[r] - s[l - 1] << endl;
}
return 0;
}