【智能优化算法】多目标于分解的多目标进化算法MOEA/D算法(Matlab代码实现)

本文介绍了基于分解的多目标进化算法MOEA/D,通过将多目标问题分解为子问题并利用邻域信息优化,提高了计算效率并保持解的均匀分布。与MOGLS和NSGA-II相比,MOEA/D在多目标问题上表现出优越性能。文中还提到了算法的数学模型、运行结果,并提供了参考文献和Matlab代码。

目录

1 概述

2 数学模型

3 运行结果

4 参考文献

5 Matlab代码及详细文章 


1 概述

基于分解的多目标进化算法(multiobjective evolu-tionary algorithm based on decomposition,MOEA/D)是一种利用分解策略解决多目标问题的算法2'。该算法通过聚合函数将多目标问题分解为N个子问题,每个子问题分配一个对应的权重和相关种群点的邻域"3'。种群迭代通过邻域内随机选择两个父代点交叉产生新的子代点后更新参考点Z ,然后通过聚合方法比较子代点与父代点,更新邻域内所有被支配的点,有效地利用局部信息,避免陷入局部最优,最后将非支配解存入外部存档(external population, EP)。MOEA/D通过分解的思想,每一个点(子问题)对应一个权重进行求解,由于权重是均匀分布在目标空间的,故MOEA/D算法相对于其他算法在计算效率提高的同时保证了点的均匀分布。

分解是传统多目标优化的基本策略。然而,它尚未在多目标进化优化中得到广泛应用。提出一种基于分解(MOEA/D)的多目标进化算法。它将多目标优化问题分解为多个标量优化子问题,并同时优化它们。每个子问题都通过使用来自其几个相邻子问题的信息进行优化,这使得MOEA / D在每一代的计算复杂性低于MOGLS和非支配排序遗传算法II(NSGA-II)。实验结果表明,采用简单分解方法的MOEA/D在多目标0-1背包问题和连续多目标优化问题上优于MOGLS和NSGA-II或具有与NSGA-II相似的性能。研究表明,使用目标归一化MOEA/D可以处理不同比例的目标,而使用高级分解方法的MOEA/D可以为3目标测试实例生成一组分布非常均匀的解。本文还对MOEA/D在小群体下的能力、MOEA/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值