👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
💥1 概述
文献来源:
节能减排、大力开发风电等新能源是电力行业发展的必然趋势[1-2] 。但风电等新能源发电属于波动性电源,其不确定性给系统稳定运行带来了严重的安全隐患[3] 。当风电大规模并网时,为保证电网安全运行会造成弃风现象,同时导致系统旋转备用容量大幅增加,极大降低了风电并网的经济性,因此含风电系统的不确定性问题成为调度决策者必须考虑的重要因素,如何兼顾含风电电力系统的可靠性、经济性以及环保性成为调度过程中面临的重要问题[4-5] 。
在低碳背景下,将碳交易引入含有大规模风电的电力系统中,能够降低系统中火电机组和热电联
产 CHP(Combined Heat and Power)机组出力,提高风电上网空间,减少系统碳排放量。
目前,针对碳交易机制国内外学者已进行了相关研究。文献[6]考虑碳交易成本,提出一种电-气互联综合能源系统调度模型。文献[7]综合考虑系统的经济性和低碳性, 采用三阶段调度方法
,建立核-火-虚拟电厂联合调度模型。文献[8]提出一种含有碳交易机制的多目标环境经济调度策略,将碳交易成本划分为碳权成本、碳收益和碳排惩罚,综合考虑碳和其他污染物的排放成本。上述研究均计及碳排放成本,对电力系统节能减排起到积极作用,但未对系统碳排放量具体划分区间。本文基于传统碳交易机制,引入阶梯型碳交易模型,进一步提高系统对风电等新能源发电的并网消纳量,降低碳排放量。
碳交易机制的引入提高了风电的并网消纳量,但风电的波动性和不确定性给调度决策带来的问题
更加严重[9] 。目前,针对风电波动性与不确定性的相关研究已取得了一定成果。文献[10]充分考虑风力发电的不确定性,对一些相互冲突的目标进行权衡,提出一种估算风力发电不确定性集的新方法。文献[11]考虑风、光发电的不确定性以及水、热、电的能量平衡,基于机会约束目标规划,构造含有风- 光-水-气-火-储的联合调度模型。文献[12]基于含高比例可再生能源的电力系统,揭示功率平衡原理,提出灵活性裕度的概率模型。文献[13]采用七分段高斯分布模拟负荷和风速的预测误差值,进而求得最经济的机组出力方式。文献[14]针对含大规模可再生能源的调度模型,将约束条件中的功率平衡等式松弛为不确定环境下的不等式方程,并引入目标规划模型中。文献[15]引入净负荷概念,将蒙 特卡洛模拟与解析法相结合,处理风、光、负荷的不 确定性。
综上所述,考虑碳交易机制能够有效提高风电消纳量,但是随着风电并网容量的增大,其波动性对系统的影响愈加严重。目前针对提高系统环保性、 降低碳排放的相关研究中,同时兼顾新能源并网给系统带来不确定影响的经济调度模型相对较少。因此,本文提出考虑风电和负荷不确定性的低碳型经济调度模型,该模型充分考虑碳排放成本、运行成本以及不确定因素,旨在提高风电等新能源发电的并网消纳量,同时降低碳排放量。
摘要
在全球气候变化和能源转型的背景下,构建以新能源为主体的新型电力系统已成为实现“双碳”目标的关键。风电作为重要的可再生能源,其固有的随机性和波动性给电力系统的安全稳定运行和优化调度带来了严峻挑战。同时,电力负荷也呈现出日益复杂的不确定性,进一步加剧了电力系统调度的难度。本文旨在探讨计及源荷两侧不确定性的含风电电力系统低碳调度问题,提出相应的优化模型和调度策略,并通过仿真验证其有效性。
一、引言
1.1 研究背景
随着能源需求的增长和环境保护的要求,风电等可再生能源在电力系统中的占比逐渐提高。然而,风电出力受气象条件影响显著,具有间歇性、波动性和不可预测性,给电力系统的稳定运行和优化调度带来了巨大挑战。同时,电力负荷也受到用户行为、气象因素、经济波动以及分布式能源和可控负荷接入的影响,呈现出日益复杂的不确定性。源荷两侧的不确定性相互叠加,使得传统基于确定性模型的电力系统调度方法难以适应新形势下的需求。
1.2 研究意义
深入研究计及源荷两侧不确定性的含风电电力系统低碳调度具有重要的理论意义和工程实践价值。一方面,有助于提升电力系统的灵活性和鲁棒性,保障系统的安全稳定运行;另一方面,有助于促进风电等可再生能源的消纳,降低碳排放,推动电力行业的低碳转型。
二、源荷两侧不确定性分析
2.1 风电出力不确定性
风电出力受风速、风向、温度等多种气象因素影响,具有显著的间歇性和波动性。尽管随着预测技术的进步,风电短期预测精度有所提高,但仍存在不可避免的预测误差,特别是在强风、阵风等特殊天气条件下。风电出力的不确定性会直接影响系统的功率平衡,可能导致发电出力不足或过剩,威胁系统的运行稳定性和可靠性。
2.2 电力负荷不确定性
电力负荷的不确定性主要来源于用户行为的随机性、气象因素(如温度对制冷/制热负荷的影响)、经济波动以及近年来分布式能源和可控负荷的接入。传统负荷通常具有较为规律的日变化和季节变化模式,但随着负荷的多元化和复杂化,其预测误差也在增加。源侧和荷侧的不确定性叠加,使得电力系统的实时功率平衡更加难以维持。
三、低碳调度优化模型
3.1 目标函数
在考虑源荷两侧不确定性的基础上,低碳调度优化模型的目标函数通常包括经济性、环境性和可靠性等多个方面。具体可以设定为:
- 最小化总成本:包括燃料成本、启停成本、弃风成本、备用成本以及碳排放成本等。
- 最小化碳排放:通过优化机组组合和出力分配,降低系统的碳排放量。
- 最大化可再生能源消纳:提高风电等可再生能源的利用率,减少弃风现象。
3.2 约束条件
低碳调度优化模型需要满足以下约束条件:
- 功率平衡约束:系统发电出力应满足负荷需求,并考虑网络损耗。
- 机组出力约束:各机组的出力应在其技术出力范围内。
- 爬坡率约束:机组出力调整速度应满足爬坡率要求。
- 备用容量约束:系统应预留足够的旋转备用和非旋转备用,以应对不确定性。
- 碳排放约束:系统碳排放量应满足碳排放配额或碳排放强度限制。
3.3 不确定性建模与处理
针对源荷两侧的不确定性,可以采用以下方法进行建模和处理:
- 概率分布建模:利用历史数据和预测信息,采用概率分布(如正态分布、Weibull分布等)或非参数方法(如核密度估计)来描述风电出力和负荷的预测误差。
- 场景生成与削减:通过Monte Carlo模拟、拉丁超立方抽样等方法生成大量风电出力和负荷场景,并采用场景削减技术(如同步回代法、距离度量法)保留具有代表性的场景,降低计算复杂度。
- 两阶段优化模型:第一阶段决策(如机组开停机)在不确定性发生前做出,第二阶段决策(如机组出力调整、备用调用)在不确定性发生后根据实际情况调整。通过求解两阶段问题,可以得到在不同场景下的最优调度方案。
- 鲁棒优化与随机优化结合:结合鲁棒优化的保守性和随机优化的概率信息,构建混合鲁棒-随机优化模型,在保证一定鲁棒性的同时,提升经济性。
四、调度策略与技术
4.1 灵活性资源利用
充分利用电力系统的灵活性资源,包括传统机组的调峰能力、储能系统、需求侧响应以及跨区域互联通道等。这些灵活性资源可以在不确定性发生时快速响应,维持系统平衡。
4.2 在线滚动调度
结合模型预测控制(MPC)的思想,采用在线滚动调度策略,根据实时的风电出力和负荷预测,不断更新调度计划,提高调度的适应性。
4.3 分布式优化与协调控制
对于大规模复杂电力系统,采用分布式优化和协调控制方法,将整体调度问题分解为多个子问题,降低计算复杂度,提高实时性。
4.4 碳交易机制引入
引入碳排放交易机制,将碳排放成本纳入目标函数,激励低碳机组优先调度,降低系统碳排放量。
五、仿真验证与结果分析
5.1 仿真平台与数据
采用IEEE标准测试系统或实际电力系统数据作为仿真平台,考虑风电出力和负荷的不确定性,生成大量场景进行仿真验证。
5.2 结果分析
通过仿真验证,分析所提低碳调度优化模型和调度策略的有效性。具体可以从以下几个方面进行评价:
- 经济性:比较不同调度策略下的总成本,包括燃料成本、启停成本、弃风成本等。
- 环境性:比较不同调度策略下的碳排放量,评估其对低碳目标的贡献。
- 可靠性:评估不同调度策略下系统的备用容量和功率平衡能力,确保系统的安全稳定运行。
六、结论与展望
6.1 研究结论
本文针对计及源荷两侧不确定性的含风电电力系统低碳调度问题,提出了相应的优化模型和调度策略。通过仿真验证,表明所提模型和策略能够有效应对源荷两侧的不确定性,提高风电消纳能力,降低碳排放量,实现经济性、环境性和可靠性的综合优化。
6.2 未来展望
未来研究可以进一步关注以下几个方面:
- 高维不确定性建模:深入研究风电出力和负荷预测误差的时空相关性,开发更精细的不确定性建模方法,如基于深度学习的概率预测和不确定性量化。
- 多能互补系统调度:探索氢储能、核能等与风电的协同机制,提升系统低碳性与可靠性。
- 市场机制设计:结合绿证交易与辅助服务市场,激励负荷侧参与调峰,促进电力市场的低碳转型。
- 数字孪生技术:构建虚实交互的调度仿真平台,实现实时优化与风险预警,提升电力系统的智能化水平。
📚2 运行结果
2.1 方法一:
2.2 方法二:
🎉3 文献来源
部分理论来源于网络,如有侵权请联系删除。
[1]崔杨,周慧娟,仲悟之,李鸿博,赵钰婷.考虑源荷两侧不确定性的含风电电力系统低碳调度[J].电力自动化设备,2020,40(11):85-93.DOI:10.16081/j.epae.202009019.