💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文内容如下:🎁🎁🎁
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
分布式电源接入配电网承载力评估方法研究复现(基于郝文斌等,2023)
一、研究背景与核心问题
随着光伏、风电等分布式电源(DG)大规模接入配电网,传统配电网的“无源”单向潮流特性转变为“有源”双向潮流,导致电压越限、网损增加、继电保护失效等问题。研究核心在于构建科学评估体系,量化配电网对分布式电源的承载能力,为规划、运行和改造提供依据。
二、评估方法框架
3. 模型求解
通过二阶锥松弛(Second-Order Cone Relaxation)将非线性潮流方程转化为二阶锥规划(SOCP)模型,利用优化工具(如YALMIP+Gurobi)求解,确保计算效率和全局最优性。
三、多层次评估体系
1. 性能层指标
- 安全性:电压偏移指数(VEI)、电压合格率(VQR)。
- 经济性:无功补偿合格率(RPQ)、平均线损率(ALR)。
- 灵活性:净负荷波动率(FRL)、新能源发电占比(RPG)。
2. 指标计算模型
3. 综合评分方法
采用组合赋权法(层次分析法+熵权法)计算指标权重,通过线性加权得到综合评分:
四、算例分析(IEEE 33节点系统)
1. 场景设置
- 接入风电和光伏,容量上限为总负荷的120%。
- 考虑无功补偿装置(SVC和电容器组)的配置。
- 优化周期为24小时,时间分辨率为1小时。
2. 关键结果
- 最大承载容量:50.73 MW(场景1),综合评分68.92;52.15 MW(场景2),综合评分71.35。
- 指标权重:灵活性指标(FRL、RPG)权重较高,反映高比例DG接入对系统灵活性的要求。
- 电压质量:所有节点电压合格率≥99.5%,满足安全约束。
- 网损率:平均线损率降低至3.2%,较传统配电网下降15%。
3. 结果分析
- 方法有效性:二阶锥规划模型在保证计算精度的同时,显著提升求解效率(较非线性规划提速5-8倍)。
- 评估全面性:多层次指标体系覆盖安全性、经济性和灵活性,避免单一指标评估的片面性。
- 实践指导意义:为配电网规划(如线路升级、无功补偿配置)和DG选址定容提供量化依据。
五、创新点与局限性
1. 创新点
- 模型创新:首次将二阶锥松弛应用于含高比例DG的配电网承载力评估,兼顾计算效率和精度。
- 体系创新:提出“性能层-指标层-计算层”三级评估框架,实现从单一指标到综合评价的跨越。
- 应用创新:通过IEEE 33节点系统验证方法普适性,为实际工程提供可复制的解决方案。
2. 局限性
- 动态特性:未考虑DG出力的时空相关性(如光伏日间波动),可能高估承载力。
- 计算复杂度:随着节点数增加,二阶锥规划模型规模呈指数级增长,需进一步优化算法。
- 数据依赖性:需高质量的负荷和DG出力数据,实际中可能存在数据缺失或误差。
六、改进方向
- 动态评估:引入时序模拟或随机场景生成,捕捉DG出力的不确定性。
- 分布式优化:采用交替方向乘子法(ADMM)分解大规模模型,提升计算效率。
- 数据驱动:结合机器学习(如LSTM神经网络)预测负荷和DG出力,减少对历史数据的依赖。
- 硬件在环(HIL)验证:通过实时数字仿真平台(如RTDS)测试评估方法在实际系统中的表现。
七、结论
郝文斌等(2023)提出的评估方法通过二阶锥规划模型和多层次指标体系,实现了对分布式电源接入配电网承载力的科学量化。算例分析表明,该方法在保证计算效率的同时,能全面反映系统的安全性、经济性和灵活性,为新型电力系统下的配电网规划与运行提供了重要参考。未来研究可进一步结合动态特性和数据驱动方法,提升评估的实用性和鲁棒性。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]郝文斌,孟志高,张勇,等.新型电力系统下多分布式电源接入配电网承载力评估方法研究[J].电力系统保护与控制,2023,51(14):23-33.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取