Redis分布式锁

关于分布式锁,可能绝大部分人都会或多或少涉及到。
举例说明:
从前端界面发起一笔支付请求,如果前端没有做防重处理,那么可能在某一个时刻会有二笔一样的单子同时到达系统后台。

分布式锁的实现

随着业务发展的需要,原单体单机部署的系统被演化成分布式集群系统后,由于分布式系统多线程、多进程并且分布在不同机器上,这将使原单机部署情况下的并发控制锁策略失效,单纯的Java API并不能提供分布式锁的能力。为了解决这个问题就需要一种跨JVM的互斥机制来控制共享资源的访问,这就是分布式锁要解决的问题!

分布式锁主流的实现方案:

基于数据库实现分布式锁

基于缓存(Redis等)

基于Zookeeper

每一种分布式锁解决方案都有各自的优缺点:

性能:redis最高

可靠性:zookeeper最高

这里,我们就基于redis实现分布式锁。

基本实现

借助于redis中的命令setnx(key, value),key不存在就新增,存在就什么都不做。同时有多个客户端发送setnx命令,只有一个客户端可以成功,返回1(true);其他的客户端返回0(false)。
在这里插入图片描述
主要使用Redis Setnx 命令

在指定的 key 不存在时,为 key 设置指定的值

设置成功,返回 1 。 设置失败,返回 0

redis> EXISTS job                # job 不存在

(integer) 0

 

redis> SETNX job "programmer"    # job 设置成功

(integer) 1

 

redis> SETNX job "code-farmer"   # 尝试覆盖 job ,失败

(integer) 0

 

redis> GET job                   # 没有被覆盖

"programmer”

为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件:

1、互斥性:任意时刻,只能有一个客户端获取锁,不能同时有两个客户端获取到锁。

2、安全性:锁只能被持有该锁的客户端删除,不能由其它客户端删除。

3、死锁:获取锁的客户端因为某些原因(如down机等)而未能释放锁,其它客户端再也无法获取到该锁。

4、容错:当部分节点(redis节点等)down机时,客户端仍然能够获取锁和释放锁。

在这里插入图片描述

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值