零.引入
利用行列式可以判定数域K上n个方程的n元线性方程组是否有唯一解,并可给出唯一解的公式表示,但不能分别无解和有无穷多个解的情况;因此需要新的方法来通过系数和常数项判定线性方程组是否有解,有多少个解,以及有无穷多个解时解集的结构
一.n维向量空间KnK^nKn及其子空间(3.1)
1.向量空间中的加法/数量乘法/运算法则:
8条运算法则中的前4条是关于加法的,后4条是关于数量乘法的
2.n维向量空间的定义:
3.线性表出:
4.线性子空间
(1)概念:
(2)命题1:
二.线性相关与线性无关(3.2)
1.定义:
2.线性相关与线性无关的向量组的比较
(1)从线性组合看:
向量组α1,α2...αs(s≥1)α_1,α_2...α_s(s≥1)α1,α2...αs(s≥1)线性相关⇔∃k12+...+ks2≠0∃k_1^2+...+k_s^2≠0∃k12+...+ks2=0使k1α1+...+ksαs=0k_1α_1+...+k_sα_s=0k1α1+...+ksαs=0
向量组α1,α2...αs(s≥1)α_1,α_2...α_s(s≥1)α1,α2...αs(s≥1)线性无关⇔当且仅当k12+...+ks2=0k_1^2+...+k_s^2=0k12+...+ks2=0,k1α1+...+ksαs=0k_1α_1+...+k_sα_s=0k1α1+...+ksαs=0
(2)从线性表出看:
向量组α1,α2...αs(s≥2)α_1,α_2...α_s(s≥2)α1,α2...αs(s≥2)线性相关⇔其中至少有1个向量可由其余向量线性表出
向量组α1,α2...αs(s≥2)α_1,α_2...α_s(s≥2)α1,α2...αs(s≥2)线性无关⇔其中任何1个向量都不能由其余向量线性表出
(3)从齐次线性方程组看:
列向量组α1,α2...αs(s≥1)α_1,α_2...α_s(s≥1)α1,α2...αs(s≥1)线性相关⇔齐次线性方程组x1α+...+xsαs=0x_1α_+...+x_sα_s=0x1α+...+xsαs=0有非0解
列向量组α1,α2...αs(s≥1)α_1,α_2...α_s(s≥1)α1,α2...αs(s≥1)线性无关⇔齐次线性方程组x1α+...+xsαs=0x_1α_+...+x_sα_s=0x1α+...+xsαs=0只有0解
(4)从行列式看:
n个n维列(或行)向量α1,α2...αnα_1,α_2...α_nα1,α2...αn线性相关⇔以α1,α2...αnα_1,α_2...α_nα1,α2...αn为列(或行)向量组的矩阵的行列式等于0
⇔n个n维列(或行)向量α1,α2...αnα_1,α_2...α_nα1,α2...αn线性无关⇔以α1,α2...αnα_1,α_2...α_nα1,α2...αn为列(或行)向量组的矩阵的行列式不等于0
(5)从线性表出看:
设向量β\betaβ可由向量组α1,α2...αnα_1,α_2...α_nα1,α2...αn线性表出
则向量组α1,α2...αnα_1,α_2...α_nα1,α2...αn线性相关⇔表出方式有无穷多种
向量组α1,α2...αnα_1,α_2...α_nα1,α2...αn线性无关⇔表出方式唯一
(6)从向量组与其部分组的关系看:
如果向量组的1个部分组线性相关,则整个向量组也线性相关
如果向量组线性无关,则其任何1个部分组也线性无关
(7)从向量组与其延伸(或缩短)组的关系看:
如果向量组线性无关,则给每个向量加上m个分量(加上的分量的位置对每个向量都相同)而得到的延伸组也线性无关
如果向量组线性相关,则把每个向量去掉m个分量(去掉的分量的位置对每个向量都相同)而得到的缩短组也线性相关(这是前半部分的逆否命题)
3.线性相关与线性表出:
定理1:设向量组α1,α2...αsα_1,α_2...α_sα1,α2...αs线性无关,则向量β\betaβ可由α1,α2...αsα_1,α_2...α_sα1,α2...αs线性表出的充要条件是:α1,α2...αs,βα_1,α_2...α_s,\betaα1,α2...αs,β线性相关
推论:设向量组α1,α2...αsα_1,α_2...α_sα1,α2...αs线性无关,则向量β\betaβ不能由α1,α2...αsα_1,α_2...α_sα1,α2...αs线性表出的充要条件是:α1,α2...αs,βα_1,α_2...α_s,\betaα1,α2...αs,β线性无关
定理2:如果向量β\betaβ可由向量组α1,α2...αsα_1,α_2...α_sα1,α2...αs线性表出,则表达方式唯一的充要条件是:α1,α2...αsα_1,α_2...α_sα1,α2...αs线性无关
4.一些性质:
定理3:在KnK^nKn中,∀n+1n+1n+1个向量都线性相关
定理4(替换定理):设α1,α2...αsα_1,α_2...α_sα1,α2...αs线性无关,β=b1α1+...+bsαs\beta=b_1α_1+...+b_sα_sβ=b1α1+...+bsαs,如果bi≠0b_i≠0bi=0,则用β\betaβ替换αi\alpha_iαi后,向量组α1...αi−1,β,αi+1...αsα_1...α_{i-1},\beta,α_{i+1}...α_sα1...αi−1,β,αi+1...αs仍线性无关;如果bi=0b_i=0bi=0,则用β\betaβ替换αi\alpha_iαi后,向量组α1...αi−1,β,αi+1...αsα_1...α_{i-1},\beta,α_{i+1}...α_sα1...αi−1,β,αi+1...αs线性相关
三.最大线性无关组与向量组的秩(3.3)
- 最大线性无关组又称极大线性无关组
1.定义:
2.向量组的等价
(1)定义:
(2)性质:
①反身性:任何1个向量组都与自身等价
②对称性:如果{α1...αs}≅{β1...βs}\{α_1...α_s\}\cong\{β_1...β_s\}{α1...αs}≅{β1...βs},则{β1...βs}≅{α1...αs}\{β_1...β_s\}\cong\{α_1...α_s\}{β1...βs}≅{α1...αs}
③传递性:如果{α1...αs}≅{β1...βs},{β1...βs}≅{γ1...γs}\{α_1...α_s\}\cong\{β_1...β_s\},\{β_1...β_s\}\cong\{γ_1...γ_s\}{α1...αs}≅{β1...βs},{β1...βs}≅{γ1...γs},则{α1...αs}≅{γ1...γs}\{α_1...α_s\}\cong\{γ_1...γ_s\}{α1...αs}≅{γ1...γs}
3.命题2:
向量组与其最大线性无关组等价
推论1:向量组的∀2个最大线性无关组等价
推论2:β\betaβ可由向量组α1...αsα_1...α_sα1...αs线性表出的充要条件是:β\betaβ可由α1...αsα_1...α_sα1...αs的1个最大线性无关组线性表出
4.向量组的秩
(1)引理:
设向量组β1...βrβ_1...β_rβ1...βr可由向量组α1...αsα_1...α_sα1...αs线性表出,如果r>sr>sr>s,则β1...βrβ_1...β_rβ1...βr线性相关
推论1:设向量组β1...βrβ_1...β_rβ1...βr可由向量组α1...αsα_1...α_sα1...αs线性表出,如果β1...βrβ_1...β_rβ1...βr线性无关,则r≤sr≤sr≤s
推论2:等价的线性无关的向量组所含向量的个数相同
推论3:向量组的∀2个最大线性无关组所含向量的个数相同
(2)向量组的秩的定义:
(3)秩与线性无关:
命题3:向量组α1...αsα_1...α_sα1...αs线性无关的充要条件是:rank{α1...αs}<srank\{α_1...α_s\}<srank{α1...αs}<s
(4)秩与线性表出:
命题4:如果向量组(Ⅰ)(Ⅰ)(Ⅰ)可由向量组(Ⅱ)(Ⅱ)(Ⅱ)线性表出,则:rank{(Ⅰ)}≤rank{(Ⅱ)}rank\{(Ⅰ)\}≤rank\{(Ⅱ)\}rank{(Ⅰ)}≤rank{(Ⅱ)}
命题5:等价的向量组有相等的秩
注意:逆命题不成立,如:
四.基与维数(3.4)
1.基
(1)定义:
显然,ε1=(1,0...0)′,ε2=(0,1...0)′...εn(0,0...1)′ε_1=(1,0...0)',ε_2=(0,1...0)'...ε_n(0,0...1)'ε1=(1,0...0)′,ε2=(0,1...0)′...εn(0,0...1)′是KnK^nKn的1个基,称其为KnK^nKn的标准基
(2)定理5:
KnK^nKn的任一非零子空间U都有1个基
(3)定理6:
KnK^nKn的非零子空间U的∀2个基所含向量的个数相等
可通过"等价的线性无关的向量组含有相同个数的向量"这一结论证明该定理
2.维数
3.坐标:
4.基与维数对子空间结构的影响
命题6:设dim U=r,则U中∀r+1个向量都线性相关
命题7:设dim U=r,则U中∀r个线性无关的向量都是U的1个基
命题8:设dim U=r,α1,α2…αr∈U,如果U中每个向量都可由α1…αr线性表出,则α1…αr是U的1个基
命题9:设U和W都是Kn的非零子空间,如果U⊆WU\subseteq WU⊆W,则dim U≤dim W
命题10:设U和W是Kn的2个非零子空间,且U⊆WU\subseteq WU⊆W,如果dim U=dim W,则U=W
定理7:向量组α1…αs的1个最大线性无关组是这个向量组生成的子空间<α1…αs>的1个基,从而dim<α1…αs>=rank{α1…αs}
5.行空间与列空间:
五.矩阵的秩(3.5)
1.列秩与行秩
(1)概念:
(2)列秩与行秩的关系:
定理8:阶梯型矩阵J的行秩与列秩相等,且均等于J的非零行的个数,且J的主元所在的列构成列向量组的1个最大线性无关组
定理12:任一矩阵A的行秩等于其列秩
(3)初等变换与行(或列)秩:
定理10:矩阵的初等行变换不改变矩阵的行秩
定理11:矩阵的初等行变换不改变矩阵的列向量组的线性相关性,因而不改变矩阵的列秩,即:
2.矩阵的秩
(1)定义:
(2)性质:
推论1:设矩阵A经过初等行变换转化成阶梯型矩阵J,则rank(A)等于J的非零行个数;设J的主元所在的列是第j1...jrj_1...j_rj1...jr列,则A的第j1...jrj_1...j_rj1...jr列构成A的列向量组的1个最大线性无关组
推论2:矩阵的初等列变换不改变矩阵的秩
定理12:任一非零矩阵的秩都等于其不为零的子式的最高阶数
该定理给出了求矩阵的秩的另1种方式
定理11和定理12表明:
推论3:设s×n矩阵A的秩为r,则A的不等于零的r阶子式所在的行(或列)构成A的行(或列)向量组的1个最大线性无关组
3.满秩矩阵
(1)定义:
(2)判定:
推论4:n阶矩阵A满秩的充要条件是:|A|≠0
六.线性方程组的解(3.6,3.7,3.8)
1.线性方程组的解的情况的判定
(1)线性方程组有解判别定理:
定理13:数域K上线性方程组x1α1+x2α2+...+xnαn=β(1)x_1α_1+x_2α_2+...+x_nα_n=β\qquad(1)x1α1+x2α2+...+xnαn=β(1)有解的充要条件是:其系数矩阵和增广矩阵的秩相等
(2)判别线性方程组的解的个数:
定理14:数域K上n元线性方程组(1)有解时,如果其系数矩阵A的秩等于n,则其有唯一解;如果A的秩小于n,则其有无穷多个解
推论1:数域K上n元齐次线性方程组有非零解的充要条件是:其系数矩阵的秩小于未知量的个数n
2.齐次线性方程组的解集的结构
(1)解向量:
概念:
齐次线性方程组的解向量的性质:
①若γ,δ∈Wγ,δ∈Wγ,δ∈W,则γ+δ∈Wγ+δ∈Wγ+δ∈W
②若γ∈W,k属于Kγ∈W,k属于Kγ∈W,k属于K,则kγ∈Wkγ∈Wkγ∈W
(2)解空间:
定理15:数域K上n元齐次线性方程组的解空间W的维数dimW=n−rank(A)dim W=n-rank(A)dimW=n−rank(A)其中A是方程组的系数矩阵;从而当(1)有非零解时,其每个基础解系所含向量的个数都等于n−rank(A)n-rank(A)n−rank(A)
(3)基础解系:
3.非齐次线性方程组的解集的结构
(1)导出组:
(2)非齐次线性方程组的解向量的性质:
性质1:若γ,δ∈Uγ,δ∈Uγ,δ∈U,则γ−δ∈Wγ-δ∈Wγ−δ∈W
性质2:若γ∈U,η∈Wγ∈U,η∈Wγ∈U,η∈W,则γ+η∈Uγ+η∈Uγ+η∈U
(3)非齐次线性方程组的解集:
定理16:如果数域K上(1)有解,则其解集U={γ0+η∣η∈W}U=\{γ_0+η | η∈W\}U={γ0+η∣η∈W}其中γ0γ_0γ0是(1)的1个解,称为特解;W是其导出组(2)的解空间
将集合U记作γ0+Wγ_0+Wγ0+W,称其是1个W型的线性流形(或子空间W的1个配集),把dimWdim WdimW称为线性流形γ0+Wγ_0+Wγ0+W的维数
注意:n元齐次线性方程组的解集W是KnK^nKn的1个子空间,但n元非齐次线性方程组的解集U不是子空间(因为对加法/数乘都不封闭);U是1个W型的线性流形,其中W是其导出组的解空间
求解非齐次线性方程组(1):
(4)非齐次线性方程组的解的个数的判定:
推论1:如果(1)有解,则其解唯一的充要条件是:其导出组(2)只有零解
附:代数运算
1.非空集合S上的1个代数运算是指S×S(S与自身的笛卡尔积)到S的1个映射
2.代数编码理论