Jetson nx上使用Docker部署tensorflow和ros,然后打包备份使用

本文介绍了在Jetson Xavier NX上使用Docker部署TensorFlow 1.15.5和ROS,并详细阐述了如何通过Dockerfile进行容器构建,安装过程,以及如何将定制的容器保存为镜像,打包备份,以便在其他设备上重新部署。内容包括启动交互式会话,挂载数据,安装额外工具,以及通过`docker commit`和`docker save`命令进行镜像保存和打包。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 如果docker对普通用户一直免费永久,我觉得我会用到退休不得不说他真的非常得好用。

完全剥离出来移植打包到别的设备上重新部署很方便。虽然我不知道他如何做到得但是使用得越久我觉得他非常友好,是我使用虚拟环境以来感觉最好用的。conda等就显得有点落伍了。

本次教程的话主要是在原有的镜像内新增安装部署了ros以后的一个打包解包使用流程,希望对使用这个工具的人有所帮助。

硬件设备: jetson xavier nx

 jetpack版本4.6,(BSP3261),本次实验tf1.15

  • 喷气背包 4.6 (L4T R32.6.1)

    • l4t-tensorflow:r32.6.1-tf1.15-py3
      • 张量流 1.15.5
    • l4t-tensorflow:r32.6.1-tf2.5-py3
      • 张量流 2.5.0

首先从docker上面拉出一个容器标签,对应于您在 Jetson 上安装的 JetPack-L4T 版本 ,

sudo docker pull nvcr.io/nvidia/l4t-tensorflow:r32.6.1-tf1.15-py3

 然后,若要在容器中启动交互式会话,请运行以下命令:

sudo docker run -it --rm --runtime nvidia --network host  nvcr.io/nvidia/l4t-tensorflow:r32.6.1-tf1.15-py3

 然后,您应该能够启动 Python3 解释器和 .import tensorflow<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无证驾驶梁嗖嗖

让我们解决Jetson使用问题

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值