介绍
智能农业和精准农业技术通过数据分析和机器学习模型,帮助农民优化作物产量、减少浪费,并提高农业生产效率。在这篇教程中,我们将使用Python和TensorFlow/Keras库来构建一个深度学习模型,用于智能农业和精准农业技术。
项目结构
首先,让我们定义项目的文件结构:
smart_agriculture/
│
├── data/
│ └── crop_data.csv
│
├── model/
│ ├── __init__.py
│ ├── data_preprocessing.py
│ ├── model.py
│ └── train.py
│
├── app/
│ ├── __init__.py
│ ├── predictor.py
│ └── routes.py
│
├── templates/
│ └── index.html
│
├── app.py
└── requirements.txt
数据准备
我们需要一个包含作物数据的CSV文件。在本教程中,我们假设已经有一个名为crop_data.csv的数据文件。
示例数据
crop_data.csv:
temperature,humidity,soil_moisture,ph,rainfal