python中的DataFrame

一、DataFrame介绍

在 Python 中,DataFrame是 pandas 库中的核心数据结构之一,它是一种二维的表格型数据结构,类似于电子表格或 SQL 表。DataFrame 由行索引(index)和列索引(columns)组成,可以方便地进行数据的选择、过滤、排序、聚合等操作。

df= DataFrame() #创建DataFrame对象		
df.info()#查看基本信息		
df.head() #查看前几行的数据,默认前5行		
df.tail() #查看后几行的数据,默认后5行		
df.index #查看索引		
df.columns #查看列名		
df.values #查看数据值		
df.describe() #描述性统计		
df.dtypes #查看各行的数据格式		
df['列名'].astype(int)#转换某列的数据类型		
df.fillna(method='')		
		
df.T #转置		
df.sort_values(by=['name','age'])#		
df.drop_duplicates(subset=['A'])#删除重复值,默认情况下全部考虑		
df.set_index('name')#设置索引		
df.reset_index()#重置索引		
df.rename(columns={'Name': 'Full_Name'}, inplace=True)		
		
筛选		
df['姓名'].isin('张')##查找名含有张的所有数据		
df[df['姓名'].isin('张')]##筛选:查找姓名这列含张的名字		
df.loc[df['姓名'].isin('张')]##筛选:查找姓名这列含张的名字		
		
模糊筛选数据		
df.loc[df['标题'].str.contains(r'.*?语音CDMA.*')] #使用正则表达式进行模糊匹配,*匹配0或无限次,?匹配0或1次		

以下是DataFrame 的示例

import pandas as pd

data = {'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'City': ['New York', 'London', 'Paris']}

df = pd.DataFrame(data)
data.info()
data.head()
data.tail()
data.describe()

#设置索引,重置索引
new_df = df.set_index('Name', drop=True)
another_df = df.set_index('Name', inplace=True)
#列明重命名
df.rename(columns={'Name': 'Full_Name'}, inplace=True)
#排序
df.sort_values('Age', ascending=False)  # 按照 'Age' 列降序排列

二、DataFrame中的Series

在 Python 中,DataFrame是pandas库中的一种二维数据结构,Series是DataFrame中的一种一维数据结构。Series的特点是一个带有名称和索引的一维数组,其中包含的数据类型可以是整数、浮点、字符串、列表、元组、ndarray等。Series中包含的数据类型可以是整数、浮点、字符串、列表、元组、ndarray等。

语法:pd.Series(data=None,index=None,dtype=None,name=None)。参数解释如下:

  • data:一维数组,用于存储数据,可以是整数、浮点数、字符串、列表、元组等。
  • index:索引标签,用于标识数据的位置。
  • dtype:数据类型,默认为 None,表示自动推断数据类型。
  • name:序列名称,默认为 None。

Series支持ndarray的运算符、广播方法,包括numpy中的各种运算函数、聚合函数等。Series还提供了一些常用的方法,如get()方法,用于获取指定索引位置的值;mask()方法,用于根据条件筛选数据等。

Python基础之pandas:Series和DataFrame定义及使用_python pandas dataframe-CSDN博客 python-pandas中DataFrame类型数据操作函数_pandas dataframe函数-CSDN博客

DataFramePython中Pandas库中的一种数据结构,类似于Excel中的二维表。它可以存储各种类型的数据,包括数值、字符串等。在处理Excel数据时,通常会使用DataFrame来读取和处理数据。\[1\] 在Python中,可以使用`pd.read_excel()`函数来读取Excel文件并将其转换为DataFrame对象。例如,可以使用以下代码读取名为"2019-2.xlsx"的Excel文件: ```python import pandas as pd df = pd.read_excel('2019-2.xlsx', sheet_name=None) ``` 另外,DataFrame提供了多种方法来遍历数据。其中,`itertuples()`方法可以按行遍历DataFrame,并将每一行迭代为元组。通过访问元组的属性,可以获取每一行的具体数值。相比于`iterrows()`方法,`itertuples()`方法的效率更高。\[2\] 以下是一个示例代码,展示了如何使用`itertuples()`方法遍历DataFrame并获取每一行的姓名和年龄两列的值: ```python import pandas as pd import numpy as np arr = np.array(\[\['赵一', 23, '男'\], \['钱二', 27, '女'\]\]) df1 = pd.DataFrame(arr, columns=\['姓名', '年龄', '性别'\], index=\['a', 'b'\]) for row in df1.itertuples(): print(getattr(row, '姓名'), getattr(row, '年龄')) ``` 此外,如果没有指定索引和列名,DataFrame会使用默认的索引和列名进行创建。可以使用`pd.DataFrame()`函数来创建DataFrame对象,并传入数据和可选的索引和列名参数。以下是一个示例代码,展示了如何创建一个包含姓名、年龄和性别的DataFrame对象: ```python import pandas as pd data = \[\['张三', 23, '男'\], \['李四', 27, '女'\], \['王二', 26, '女'\]\] df = pd.DataFrame(data) print(df) ``` 以上是关于PythonDataFrame的一些基本介绍和用法。希望对你有帮助! #### 引用[.reference_title] - *1* [pythonDataFrame篇](https://blog.csdn.net/qq_36151472/article/details/103344391)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [python学习--DataFrame](https://blog.csdn.net/m0_60392490/article/details/121184960)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值