lcs leetcode1143 dp

这篇博客探讨了如何找到两个字符串的最长公共子序列(LCS)问题,使用动态规划方法进行求解。通过示例输入abcde和ace,解释了算法的运行过程,最终返回了LCS的长度为3。文章详细介绍了动态规划的状态转移方程,并给出了AC代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 最长公共子序列
    给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:

输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。

题解:动态规划
ACcode:

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int n=text1.length();
        int m=text2.length();
        int dp[][]=new int[1000][1000];
        for (int i = 0; i <n ; i++) {
            for (int j = 0; j <m ; j++) {
                if (text1.charAt(i)==text2.charAt(j)){
                    dp[i+1][j+1]=dp[i][j]+1;
                }else{
                    dp[i+1][j+1]=Math.max(dp[i][j+1],dp[i+1][j]);
                }
            }
        }
        return dp[n][m];
    }
}
<think>好的,我需要解决用户关于LeetCode最长公共子序列(LCS)问题的查询。首先,我要回忆LCS的基本概念和动态规划解法。用户可能想知道如何用动态规划来解决这个问题,所以得先理清动态规划的步骤。 首先,LCS问题是指找到两个字符串中最长的公共子序列的长度,这里的子序列不要求连续。动态规划通常是解决这类问题的有效方法。我需要确定状态转移方程,以及如何初始化DP表。 根据已有的知识,动态规划dp[i][j]表示字符串text1的前i个字符和text2的前j个字符的最长公共子序列长度。如果当前字符相同,即text1[i-1] == text2[j-1],那么dp[i][j] = dp[i-1][j-1] + 1;否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。这样逐步填充整个表格,最终右下角的值就是结果。 接下来要考虑的是代码实现。用户可能需要一个清晰的示例代码,比如用Python或者Java写的。根据引用中的参考代码,比如引用3中的Java代码,可以推断出用户可能更倾向于Python,但需要确认。不过用户的问题没有指定语言,所以可能需要给出通用解法,或者选择常用语言。 另外,用户提供的引用中有多个相关资源,比如引用1、4、5都涉及LCS动态规划解法,尤其是引用5提到了LeetCode的相关题目。需要确保回答中正确引用这些资料,比如在步骤中提到动态规划的实现,并添加引用标识。 然后,用户的问题还要求生成相关问题。根据提供的示例,问题可能涉及时间复杂度、优化方法、与其他问题的结合等。比如,可以问如何优化空间复杂度,或者如何处理三个字符串的LCS问题(如引用4提到的)。 在组织回答时,要结构清晰,分步骤解释动态规划的思路,初始化、状态转移、遍历顺序,最后给出代码示例。同时要检查LaTeX格式是否正确,数学表达式用$...$,独立公式用$$...$$,并确保所有行内公式正确,比如状态转移方程。 还需要注意用户提到的引用要自然添加在末尾。例如,在讲解动态规划时,引用到引用1或5的内容,可能需要标注[^1]或[^5]。 最后,验证代码的正确性。比如,给出的Python代码是否正确处理边界情况,如空字符串。比如当text1或text2为空时,返回0,这应该在代码中体现。另外,二维数组的初始化是否正确,以及循环的索引是否正确(从1到len(text1)+1等)。 可能还需要考虑空间优化,比如使用滚动数组来减少空间使用,但用户可能更关注基本解法,所以可以放在相关问题中讨论。 总结步骤: 1. 解释问题定义和动态规划思路。 2. 详细说明DP表的构建和状态转移方程。 3. 提供Python代码示例,并解释关键部分。 4. 分析时间和空间复杂度。 5. 添加相关问题,如优化、应用场景等。 6. 正确引用提供的参考资料,特别是在提到动态规划解法时引用[^1]或[^5]。 现在需要检查是否有遗漏的要点,比如子序列的定义是否明确,或者是否考虑了边界条件。同时确保LaTeX格式正确,例如状态转移方程是否正确用$...$包裹,独立公式是否需要单独成段。例如,状态转移方程可能作为行内公式,而较大的公式可能需要用独立格式,但根据用户示例,可能行内即可。 最后,确保回答符合用户要求的结构:问题解决方案分步骤,代码用正确格式,相关问题列举,引用正确标注。</think>### LeetCode 最长公共子序列(LCS) 问题解析 #### 问题定义 给定两个字符串 `text1` 和 `text2`,返回它们的最长公共子序列(LCS)的长度。子序列不要求连续,但需保持相对顺序。例如,`text1 = "abcde"` 和 `text2 = "ace"` 的 LCS 是 `"ace"`,长度为 3。 --- #### 动态规划解法 **步骤 1:定义状态** 定义二维数组 `dp[i][j]` 表示 `text1` 的前 `i` 个字符和 `text2` 的前 `j` 个字符的 LCS 长度。 **步骤 2:初始化** 当 `i=0` 或 `j=0` 时,表示一个字符串为空,此时 LCS 长度为 0: $$dp[0][j] = 0, \quad dp[i][0] = 0$$ **步骤 3:状态转移方程** - 若 `text1[i-1] == text2[j-1]`(字符匹配),则: $$dp[i][j] = dp[i-1][j-1] + 1$$ - 若字符不匹配,则取左方或上方的最大值: $$dp[i][j] = \max(dp[i-1][j], dp[i][j-1])$$ **步骤 4:遍历顺序** 从 `i=1` 到 `len(text1)`,`j=1` 到 `len(text2)`,逐步填充表格。 --- #### Python 代码实现 ```python def longestCommonSubsequence(text1: str, text2: str) -> int: m, n = len(text1), len(text2) dp = [[0] * (n+1) for _ in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): if text1[i-1] == text2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[m][n] ``` --- #### 复杂度分析 - **时间复杂度**:$O(m \cdot n)$,需填充一个 `m×n` 的表格。 - **空间复杂度**:$O(m \cdot n)$,使用二维数组存储状态。 (可通过滚动数组优化至 $O(n)$,但代码会稍复杂) --- #### 应用场景 - 基因序列比对(如 DNA 相似性分析)。 - 文件差异比较(如 Git 的 `diff` 命令)。 - 自然语言处理中的文本相似度计算[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值