2025最新算法应用:基于恒星振荡优化(Stellar oscillation optimizer,SOO)算法的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码

一、恒星振荡优化算法

恒星振荡优化(Stellar oscillation optimizer,SOO)算法是2025年提出的一种受自然启发的元启发式优化算法。
SOO 算法的灵感源于天体物理学中恒星的振荡现象。恒星振荡是指恒星以固有频率发生的振荡,由内部压力和引力不平衡引发,其振荡模式和频率取决于恒星的质量、半径及内部结构。在该算法中,模拟了恒星脉动中的正弦和余弦模式,正弦函数代表恒星振荡的外向扩展阶段,对应优化过程的探索阶段,使算法能广泛探索解空间;余弦函数代表收缩阶段,对应利用阶段,聚焦于细化探索阶段发现的解决方案 。此外,角频率和周期在算法中用于控制搜索振荡器的振荡运动,周期随时间演变,让搜索振荡器从早期的广泛探索逐渐过渡到集中探索。同时,借鉴恒星光曲线(表示恒星亮度随时间的变化)的概念,在优化过程中持续跟踪每个振荡器的适应度值(类似恒星亮度),并通过对前 3 个表现最佳的振荡器进行排序,影响种群其余部分的运动,确保搜索集中在有希望的区域。
在这里插入图片描述

SOO算法具有简单、鲁棒的特性,全局搜索能力强。它通过独特的振荡机制,有效平衡了解空间的探索和利用,避免算法过早陷入局部最优解。同时,参数设置相对简单,便于在不同场景下应用和调整。此外,该算法收敛速度快,能够在较短时间内找到较优解,并且可扩展性强,能方便地与其他优化算法或技术相结合,以适应更复杂的优化问题。
在这里插入图片描述

在这里插入图片描述

参考文献
[1]Rodan, A., Al-Tamimi, AK., Al-Alnemer, L. et al. Stellar oscillation optimizer: a nature-inspired metaheuristic optimization algorithm. Cluster Comput 28, 362 (2025). https://doi.org/10.1007/s10586-024-04976-5

二. 无人机路径规划数学模型

2.1 路径最优性

为了提高无人机的操作效率,规划的路径需要在特定的应用标准下达到最优。在我们的研究中,主要关注空中摄影、测绘和表面检查,因此选择最小化路径长度作为优化目标。由于无人机通过地面控制站(GCS)进行控制,飞行路径 XiX_iXi 被表示为无人机需要飞越的一系列 nnn 个航路点的列表。每个航路点对应于搜索地图中的一个路径节点,其坐标为 Pij=(xij,yij,zij)P_{ij} = (x_{ij}, y_{ij}, z_{ij})Pij=(xij,yij,zij)。通过表示两个节点之间的欧几里得距离为 路径长度成本 F1F_1F1 可以计算为:

F1(X)=∑j=1n−1∥PijPi,j+1→∥ F_1(X) = \sum_{j=1}^{n-1} \| \overrightarrow{P_{ij}P_{i,j+1}} \| F1(X)=j=1n1PijPi,j+1

2.2 安全性和可行性约束

除了最优性之外,规划的路径还需要确保无人机的安全操作,引导其避开操作空间中可能出现的威胁,这些威胁通常由障碍物引起。设 KKK 为所有威胁的集合,每个威胁被假设为一个圆柱体,其投影的中心坐标为 CkC_kCk,半径为 RkR_kRk,如下图 所示。
在这里插入图片描述

对于给定的路径段 ∥PijPi,j+1→∥\| \overrightarrow{P_{ij}P_{i,j+1}} \|PijPi,j+1,其相关的威胁成本与它到 CkC_kCk 的距离 dkd_kdk 成正比。考虑到无人机的直径 DDD 和到碰撞区域的危险距离 SSS,威胁成本 F2F_2F2 在障碍物集合 KKK 上计算如下:

F2(Xi)=∑j=1n−1∑k=1KTk(PijPi,j+1→), F_2(X_i) = \sum_{j=1}^{n-1} \sum_{k=1}^K T_k(\overrightarrow{P_{ij}P_{i,j+1}}), F2(Xi)=j=1n1k=1KTk(PijPi,j+1),

其中

Tk(PijPi,j+1→)={0,if dk>S+D+Rk(S+D+Rk)−dk,if D+Rk<dk≤S+D+Rk∞,if dk≤D+Rk T_k(\overrightarrow{P_{ij}P_{i,j+1}}) = \begin{cases} 0, & \text{if } d_k > S + D + R_k \\ (S + D + R_k) - d_k, & \text{if } D + R_k < d_k \leq S + D + R_k \\ \infty, & \text{if } d_k \leq D + R_k \end{cases} Tk(PijPi,j+1)=0,(S+D+Rk)dk,,if dk>S+D+Rkif D+Rk<dkS+D+Rkif dkD+Rk

在操作过程中,飞行高度通常被限制在给定的最小和最大高度之间,例如在调查和搜索应用中,需要相机以特定的分辨率和视场收集视觉数据,从而限制飞行高度。设最小和最大高度分别为 hminh_{\text{min}}hminhmaxh_{\text{max}}hmax。与航路点 PijP_{ij}Pij 相关的高度成本计算为:

Hij={∣hij−hmax+hmin2∣,if hmin≤hij≤hmax∞,otherwise H_{ij} = \begin{cases} |h_{ij} - \frac{h_{\text{max}} + h_{\text{min}}}{2}|, & \text{if } h_{\text{min}} \leq h_{ij} \leq h_{\text{max}} \\ \infty, & \text{otherwise} \end{cases} Hij={hij2hmax+hmin,,if hminhijhmaxotherwise

其中 hijh_{ij}hij 表示相对于地面的飞行高度,如下图所示。
在这里插入图片描述

可以看出,HijH_{ij}Hij 保持平均高度并惩罚超出范围的值。对所有航路点求和得到高度成本:

F3(X)=∑j=1nHij F_3(X) = \sum_{j=1}^n H_{ij} F3(X)=j=1nHij

平滑成本评估转弯率和爬升率,这对于生成可行路径至关重要。如下图 所示。
在这里插入图片描述

转弯角 ϕij\phi_{ij}ϕij 是两个连续路径段 Pij′Pi,j+1′→\overrightarrow{P'_{ij}P'_{i,j+1}}PijPi,j+1Pi,j+1′Pi,j+2′→\overrightarrow{P'_{i,j+1}P'_{i,j+2}}Pi,j+1Pi,j+2 在水平面 Oxy 上的投影之间的角度。设 k→\overrightarrow{k}k 是 z 轴方向的单位向量,投影向量可以计算为:

Pij′Pi,j+1′→=k→×(PijPi,j+1→×k→) \overrightarrow{P'_{ij}P'_{i,j+1}} = \overrightarrow{k} \times (\overrightarrow{P_{ij}P_{i,j+1}} \times \overrightarrow{k}) PijPi,j+1=k×(PijPi,j+1×k)

因此,转弯角计算为:

ϕij=arctan⁡(∥Pij′Pi,j+1′→×Pi,j+1′Pi,j+2′→∥PijPi,j+1′→⋅Pi,j+1′Pi,j+2′→) \phi_{ij} = \arctan\left( \frac{\| \overrightarrow{P'_{ij}P'_{i,j+1}} \times \overrightarrow{P'_{i,j+1}P'_{i,j+2}} \|}{\overrightarrow{P_{ij}P'_{i,j+1}} \cdot \overrightarrow{P'_{i,j+1}P'_{i,j+2}}} \right) ϕij=arctanPijPi,j+1Pi,j+1Pi,j+2PijPi,j+1×Pi,j+1Pi,j+2

爬升角 ψij\psi_{ij}ψij 是路径段 PijPi,j+1→\overrightarrow{P_{ij}P_{i,j+1}}PijPi,j+1 与其在水平面上的投影 Pij′Pi,j+1′→\overrightarrow{P'_{ij}P'_{i,j+1}}PijPi,j+1 之间的角度,由下式给出:

ψij=arctan⁡(zi,j+1−zij∥Pij′Pi,j+1′→∥) \psi_{ij} = \arctan\left( \frac{z_{i,j+1} - z_{ij}}{\| \overrightarrow{P'_{ij}P'_{i,j+1}} \|} \right) ψij=arctanPijPi,j+1zi,j+1zij

然后,平滑成本计算为:

F4(X)=a1∑j=1n−2ϕij+a2∑j=1n−1∣ψij−ψj−1∣ F_4(X) = a_1 \sum_{j=1}^{n-2} \phi_{ij} + a_2 \sum_{j=1}^{n-1} |\psi_{ij} - \psi_{j-1}| F4(X)=a1j=1n2ϕij+a2j=1n1ψijψj1

其中 a1a_1a1a2a_2a2 分别是转弯角和爬升角的惩罚系数。

2.3 总体成本函数

2.3.1 单个无人成本计算

考虑到路径 XXX 的最优性、安全性和可行性约束,iii 个无人机总体成本函数可以定义为以下形式:

fi(X)=∑k=14bkFk(Xi) f_i(X) = \sum_{k=1}^4 b_k F_k(X_i) fi(X)=k=14bkFk(Xi)

其中 bkb_kbk 是权重系数,F1(Xi)F_1(X_i)F1(Xi)F4(Xi)F_4(X_i)F4(Xi) 分别是路径长度、威胁、平滑度和飞行高度相关的成本。决策变量是 XXX,包括 nnn 个航路点 Pij=(xij,yij,zij)P_{ij} = (x_{ij}, y_{ij}, z_{ij})Pij=(xij,yij,zij) 的列表,使得 Pij∈OP_{ij} \in OPijO,其中 OOO 是无人机的操作空间。根据这些定义,成本函数 FFF 是完全确定的,可以作为路径规划过程的输入。

2.3.2 多无人机总成本计算

若共有mmm 个无人机,其总成本为单个无人机成本和,计算公式如下:
fitness(X)=∑i=1mfi(X) fitness(X) = \sum_{i=1}^mf_i(X) fitness(X)=i=1mfi(X)
参考文献:
[1] Phung M D , Ha Q P .Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[J].Applied Soft Computing, 2021(2):107376.DOI:10.1016/j.asoc.2021.107376.

三、部分代码及结果

close all
clear
clc
% dbstop if all error
pop=100;%种群大小(可以修改)
maxgen=200;%最大迭代(可以修改)

%% 模型建立
model=Create_Model();
UAVnum=4;%无人机数量(可以修改)  必须与无人机的起始点保持一致

%% 初始化每个无人机的模型
for i=1:UAVnum
    ModelUAV(i).model=model;
end

%% 第一个无人机 起始点
start_location = [120;200;100];
end_location = [800;800;150];
ModelUAV(1).model.start=start_location;
ModelUAV(1).model.end=end_location;
%% 第二个无人机 起始点
start_location = [400;100;100];
end_location = [900;600;150];
ModelUAV(2).model.start=start_location;
ModelUAV(2).model.end=end_location;
%% 第三个无人机 起始点
start_location = [200;150;150];
end_location =[850;750;150];
ModelUAV(3).model.start=start_location;
ModelUAV(3).model.end=end_location;
%% 第四个无人机 起始点
start_location = [100;100;150];
end_location = [800;730;150];
ModelUAV(4).model.start=start_location;
ModelUAV(4).model.end=end_location;
%% 第5个无人机 起始点
% start_location = [500;100;130];
% end_location = [850;650;150];
% ModelUAV(5).model.start=start_location;
% ModelUAV(5).model.end=end_location;
% %% 第6个无人机 起始点
% start_location = [100;100;150];
% end_location =   [800;800;150];
% ModelUAV(6).model.start=start_location;
% ModelUAV(6).model.end=end_location;

五个无人机:

在这里插入图片描述

四、完整MATLAB代码见下方名片

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值