机器人路径规划
文章平均质量分 91
IT猿手
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于CNN-BiLSTM-GRU的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
深度Q网络(DQN)是深度强化学习领域的里程碑算法,由DeepMind于2013年提出。它首次在 Atari 2600 游戏上实现了超越人类的表现,解决了传统Q学习在高维状态空间中的应用难题。DQN通过引入作为Q函数的近似器,并采用经验回放和目标网络等技术,有效解决了上述问题。原创 2025-04-10 21:59:15 · 1180 阅读 · 0 评论 -
基于CNN-LSTM-GRU的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
深度Q网络(DQN)是深度强化学习领域的里程碑算法,由DeepMind于2013年提出。它首次在 Atari 2600 游戏上实现了超越人类的表现,解决了传统Q学习在高维状态空间中的应用难题。DQN通过引入作为Q函数的近似器,并采用经验回放和目标网络等技术,有效解决了上述问题。原创 2025-04-10 20:49:30 · 857 阅读 · 0 评论 -
基于CNN-GRU的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
深度Q网络(DQN)是深度强化学习领域的里程碑算法,由DeepMind于2013年提出。它首次在 Atari 2600 游戏上实现了超越人类的表现,解决了传统Q学习在高维状态空间中的应用难题。DQN通过引入作为Q函数的近似器,并采用经验回放和目标网络等技术,有效解决了上述问题。原创 2025-04-10 20:31:01 · 1009 阅读 · 0 评论 -
基于CNN-LSTM的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
深度Q网络(DQN)是深度强化学习领域的里程碑算法,由DeepMind于2013年提出。它首次在 Atari 2600 游戏上实现了超越人类的表现,解决了传统Q学习在高维状态空间中的应用难题。DQN通过引入作为Q函数的近似器,并采用经验回放和目标网络等技术,有效解决了上述问题。原创 2025-04-03 22:46:18 · 1074 阅读 · 0 评论 -
基于CNN-BiLSTM的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
路径规划是移动机器人领域主要研究内容之一,移动机器人路径规划即机器人在所处环境下选择一条从起点到终点的无碰撞路径。传统路径规划方法过分依赖环境地图,随着深度学习(Deep Learning,DL)和强化学习(Reinforcement Learning,RL)的快速发展,深度强化学习(Deep Reinforcement Learning,DRL)算法广泛应用于移动机器人路径规划和避障。原创 2025-04-03 22:15:08 · 883 阅读 · 0 评论 -
基于烟花算法(Fireworks Algorithm,FWA)及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
烟花算法(Fireworks Algorithm,FWA)是一种受烟花爆炸产生火星启发的群体智能优化算法,由谭营教授等人于2010年提出。原创 2025-03-29 20:09:04 · 1323 阅读 · 0 评论 -
基于鹅优化算法GOOSE及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
鹅优化算法(GOOSE Algorithm,GOOSE)从鹅的休息和觅食行为获得灵感,当鹅听到任何奇怪的声音或动作时,它们会发出响亮的声音来唤醒群中的个体,并保证它们的安全。参考文献原文链接:https://blog.csdn.net/weixin_46204734/article/details/139906134。原创 2025-03-29 19:51:27 · 783 阅读 · 0 评论 -
基于蛇鹫优化算法SBOA及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
蛇鹫优化算法(Secretary bird optimization algorithm,SBOA)由 Fu Youfa等人于2024年提出,该算法的灵感来自于蛇鹫在自然环境中的生存行为。参考文献:原文链接:https://blog.csdn.net/weixin_46204734/article/details/139331352。原创 2025-03-29 19:40:34 · 946 阅读 · 0 评论 -
基于河马优化算法HO及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
河马优化算法(Hippopotamus optimization algorithm,HO)由Amiri等人于2024年提出,该算法模拟了河马在河流或池塘中的位置更新、针对捕食者的防御策略以及规避方法。河马优化算法的灵感来自河马生活中观察到的三种突出行为模式。河马群由几只雌性河马、河马幼崽、多只成年雄性河马和一只占主导地位的雄性河马(牛群的领导者)组成.由于它们与生俱来的好奇心,幼崽和小河马经常表现出远离群体的倾向。因此,它们可能会变得孤立并成为捕食者的目标。原创 2025-03-29 19:25:11 · 1141 阅读 · 0 评论 -
基于部落竞争与成员合作算法CTCM及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
部落竞争与成员合作算法(Competition of tribes and cooperation of members algorithm,CTCM)由 Chen Zuyan等人于2024年提出的一种智能优化算法。该算法受古代部落之间竞争及其合作行为的启发而得。参考文献:原文链接:https://blog.csdn.net/weixin_46204734/article/details/145190813。原创 2025-03-29 19:11:23 · 1496 阅读 · 0 评论 -
基于山羊优化算法(Goat Optimization Algorithm, GOA)及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
山羊优化算法(Goat Optimization Algorithm, GOA)是2025年提出的一种新型生物启发式元启发式算法,灵感来源于山羊在恶劣和资源有限环境中的适应性行为。该算法旨在通过模拟山羊的觅食策略、移动模式和躲避寄生虫的能力,有效平衡探索和开发,以解决全局优化问题。原创 2025-03-29 11:30:49 · 2090 阅读 · 0 评论 -
基于阿尔法进化(Alpha Evolution,AE)算法及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。以下是AE算法的主要步骤和特点:主要步骤初始化:在搜索空间中随机生成一组候选解,并评估其质量。Alpha算子:通过采样候选解构建进化矩阵,并通过矩阵的对角线或加权操作估计种群状态。为了增强每一代估计的相关性,设计了两个进化路径来积累估计结果并实现基向量的自适应。原创 2025-03-29 11:11:27 · 1095 阅读 · 0 评论 -
基于多目标浣熊优化算法(multi-objective Coati Optimization Algorithm,MOCOA)的移动机器人路径规划研究,MATLAB代码
移动机器人路径规划是机器人研究的重要分支,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。目前,常用的移动机器人全局路径规划方法很多,如栅格法和人工势场法。原创 2025-03-06 21:28:54 · 1084 阅读 · 0 评论 -
基于多目标向日葵优化算法(Multi-objective Sunflower Optimization,MOSFO)的移动机器人路径规划研究,MATLAB代码
移动机器人路径规划是机器人研究的重要分支,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。目前,常用的移动机器人全局路径规划方法很多,如栅格法和人工势场法。原创 2025-03-06 20:16:39 · 1076 阅读 · 0 评论 -
基于非支配排序的鲸鱼优化算法(Non-Dominated Sorting Whale Optimization Algorithm,NSWOA)的移动机器人路径规划研究
移动机器人路径规划是机器人研究的重要分支,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。目前,常用的移动机器人全局路径规划方法很多,如栅格法和人工势场法。原创 2025-03-06 19:40:13 · 961 阅读 · 0 评论 -
栅格地图路径规划:基于人工旅鼠算法(Artificial Lemming Algorithm, ALA)的移动机器人路径规划(提供MATLAB代码)
该算法通过对这四种行为进行数学建模,实现对问题的优化求解,在保持计算效率的同时更好地平衡勘探和开发,能有效应对过早收敛、探索不足以及在高维、非凸搜索空间中缺乏稳健性等挑战。随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。每个栅格用序号标识,无障碍物的栅格为可行栅格(标记为0),有障碍物的栅格为不可行栅格(标记为1)。栅格的尺寸根据障碍物尺寸和安全距离设置。原创 2025-02-26 20:54:47 · 1118 阅读 · 0 评论 -
栅格地图路径规划:基于雪橇犬优化算法(Sled Dog Optimizer,SDO)的移动机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。栅格地图是路径规划中常用的环境表示方法,通过将工作空间划分为二维栅格来简化环境建模。每个栅格用序号标识,无障碍物的栅格为可行栅格(标记为0),有障碍物的栅格为不可行栅格(标记为1)。栅格中心位置作为其在坐标系中的坐标。路径规划问题转化为在栅格地图上寻找从起始点到目标点的有序栅格子集,这些栅格子集的中心连线即为规划路径。原创 2025-02-25 21:45:13 · 1224 阅读 · 0 评论 -
栅格地图路径规划:基于贪婪个体优化算法(Greedy Man Optimization Algorithm,GMOA)的移动机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。栅格地图是路径规划中常用的环境表示方法,通过将工作空间划分为二维栅格来简化环境建模。每个栅格用序号标识,无障碍物的栅格为可行栅格(标记为0),有障碍物的栅格为不可行栅格(标记为1)。栅格中心位置作为其在坐标系中的坐标。路径规划问题转化为在栅格地图上寻找从起始点到目标点的有序栅格子集,这些栅格子集的中心连线即为规划路径。原创 2025-02-25 21:00:45 · 1032 阅读 · 0 评论 -
栅格地图路径规划:基于梦境优化算法(Dream Optimization Algorithm,DOA)的移动机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。遗忘和补充策略:在搜索过程中,部分解会被遗忘,同时通过一定的规则生成新的解来补充种群,以增加种群的多样性,避免算法陷入局部最优。记忆策略:算法在搜索过程中会保留一部分优秀的解,这些解会被记忆下来,并在后续的搜索中作为参考,以引导搜索方向。稳定性好:在多次运行中,DOA能够稳定地收敛到相似的最优解,具有较好的稳定性。原创 2025-02-25 20:43:11 · 933 阅读 · 0 评论 -
栅格地图路径规划:基于孟加拉虎优化( Savannah Bengal Tiger Optimization ,SBTO)算法的移动机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。栅格地图是路径规划中常用的环境表示方法,通过将工作空间划分为二维栅格来简化环境建模。每个栅格用序号标识,无障碍物的栅格为可行栅格(标记为0),有障碍物的栅格为不可行栅格(标记为1)。栅格中心位置作为其在坐标系中的坐标。路径规划问题转化为在栅格地图上寻找从起始点到目标点的有序栅格子集,这些栅格子集的中心连线即为规划路径。原创 2025-02-25 20:30:46 · 836 阅读 · 0 评论 -
栅格地图路径规划:基于互联银行系统优化(Connected Banking System Optimizer,CBSO)算法的移动机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。每个栅格用序号标识,无障碍物的栅格为可行栅格(标记为0),有障碍物的栅格为不可行栅格(标记为1)。生成 RN1 和 R1 的值 :生成随机数 RN1 和 R1 的值,这些值可能用于后续的计算或决策过程。生成 RN2 和 R2 的值 :生成随机数 RN2 和 R2 的值,这些值可能用于后续的计算或决策过程。原创 2025-02-25 20:19:12 · 1073 阅读 · 0 评论 -
栅格地图路径规划:基于雪雁算法(Snow Geese Algorithm,SGA)的移动机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。雪雁算法(Snow Geese Algorithm,SGA)是2024年提出的一种新型元启发式算法,其灵感来源于雪雁的迁徙行为,特别是它们在迁徙过程中形成的独特“人字形”和“直线”飞行模式。每个栅格用序号标识,无障碍物的栅格为可行栅格(标记为0),有障碍物的栅格为不可行栅格(标记为1)。原创 2025-02-24 21:59:45 · 976 阅读 · 0 评论 -
栅格地图路径规划:基于改进型雪雁算法(Improved Snow Geese Algorithm, ISGA)的移动机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。雪雁算法(Snow Geese Algorithm,SGA)是2024年提出的一种新型元启发式算法,其灵感来源于雪雁的迁徙行为,特别是它们在迁徙过程中形成的独特“人字形”和“直线”飞行模式。栅格中心位置作为其在坐标系中的坐标。通过计算个体的适应值与群体平均适应值的差异,调整个体的位置更新,以提高算法的收敛速度和精度。原创 2025-02-24 21:46:22 · 798 阅读 · 0 评论 -
栅格地图路径规划:基于莲花算法(Lotus flower algorithm,LFA)的机器人路径规划(提供MATLAB代码)
LEA 的探索阶段(Exploration Phase)主要基于蜻蜓算法(Dragonfly Algorithm)的全局授粉过程,模拟蜻蜓在花粉传播中的行为。蜻蜓算法通过模拟蜻蜓的群体行为,包括分离(Separation)、对齐(Alignment)、内聚(Cohesion)以及对食物的吸引和对敌人的回避,来实现对解空间的全局搜索。分离(Separation)Si−∑j1NXi−XjSi−j1∑NXi−Xj其中,XiX_iXi。原创 2025-02-24 20:51:12 · 882 阅读 · 0 评论 -
栅格地图路径规划:基于阿尔法进化(Alpha Evolution,AE)算法的移动机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。AE算法通过其独特的Alpha算子和自适应机制,成功解决了传统进化算法中的诸多问题,在多个基准测试和实际应用中表现出色,证明了其在优化算法领域的重要价值。原创 2025-02-24 20:37:11 · 760 阅读 · 0 评论 -
栅格地图路径规划:基于牛优化( OX Optimizer,OX)算法的移动机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。每个栅格用序号标识,无障碍物的栅格为可行栅格(标记为0),有障碍物的栅格为不可行栅格(标记为1)。例如,随机暴露置换群中的元素,并通过应用均匀分布的随机值来修正这些元素,从而生成新的置换。:首先,定义问题的解空间范围、种群规模以及最大迭代次数等关键参数,并根据需要选择合适的适应度函数来评估个体的优劣。原创 2025-02-24 20:30:35 · 1302 阅读 · 0 评论 -
栅格地图路径规划:基于龙卷风优化算法( Tornado Optimizer with Coriolis force ,TOC) 的机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。龙卷风优化算法( Tornado Optimizer with Coriolis force ,TOC) 是2025年提出的一种新型的基于自然启发的元启发式算法,其灵感来源于自然界中龙卷风的形成和演化过程。每个栅格用序号标识,无障碍物的栅格为可行栅格(标记为0),有障碍物的栅格为不可行栅格(标记为1)。原创 2025-02-24 20:16:39 · 1033 阅读 · 0 评论 -
栅格地图路径规划:基于麋鹿群优化算法(Elephant Herding Optimization, EHO)的机器人路径规划(提供MATLAB代码)
随着机器人技术的发展,路径规划算法不断演进,从传统的栅格法和人工势场法,发展到现代的智能优化算法,如遗传算法、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法和鲸鱼优化算法等。每个栅格用序号标识,无障碍物的栅格为可行栅格(标记为0),有障碍物的栅格为不可行栅格(标记为1)。路径规划问题转化为在栅格地图上寻找从起始点到目标点的有序栅格子集,这些栅格子集的中心连线即为规划路径。在选择期,所有家族的成员(包括公麋鹿、母麋鹿和后代)被合并,然后选择适应度值最好的个体作为下一代的种群。原创 2025-02-24 20:02:41 · 917 阅读 · 0 评论 -
基于深度强化学习(Deep Reinforcement Learning,DRL)算法的移动机器人路径规划研究,MATLAB代码
传统的路径规划算法应用到未知复杂的环境时,要寻到一条全程无碰撞的路径是很困难的。传统的移动机器人路径规划算法需要提前获取环境信息,在已知的地图上去规划全局路径,缺乏自主探索路径的能力,无法在未知环境下找到一条从起始点到目标点的无碰撞路径。在移动机器人的路径规划中,机器人需要在其所处环境中识别并选择一条无碰撞的路径,以确保其能够顺利地到达目的地,同时避免与环境中的障碍物发生碰撞。这些算法能够在已知的环境中找到最短或最优的路径,但它们往往需要事先对环境有完整的了解,并且对环境变化的适应性较差。原创 2024-12-16 21:26:51 · 1948 阅读 · 0 评论 -
基于深度Q网络(Deep Q Network,DQN)方法的移动机器人路径规划,MATLAB代码
在移动机器人的路径规划中,机器人需要在其所处环境中识别并选择一条无碰撞的路径,以确保其能够顺利地到达目的地,同时避免与环境中的障碍物发生碰撞。此外,DRL算法能够适应环境的变化,如障碍物的移动或新路径的出现,这使得它们在实际应用中更加灵活和鲁棒。这些算法能够在已知的环境中找到最短或最优的路径,但它们往往需要事先对环境有完整的了解,并且对环境变化的适应性较差。深度强化学习为移动机器人的路径规划和避障提供了一种新的解决方案,它不仅能够提高机器人在复杂环境中的导航能力,还能够增强其对未知环境的适应性和学习能力。原创 2024-12-16 21:15:43 · 825 阅读 · 0 评论 -
基于深度强化学习的移动机器人路径规划,MATLAB代码
在移动机器人的路径规划中,机器人需要在其所处环境中识别并选择一条无碰撞的路径,以确保其能够顺利地到达目的地,同时避免与环境中的障碍物发生碰撞。此外,DRL算法能够适应环境的变化,如障碍物的移动或新路径的出现,这使得它们在实际应用中更加灵活和鲁棒。这些算法能够在已知的环境中找到最短或最优的路径,但它们往往需要事先对环境有完整的了解,并且对环境变化的适应性较差。深度强化学习为移动机器人的路径规划和避障提供了一种新的解决方案,它不仅能够提高机器人在复杂环境中的导航能力,还能够增强其对未知环境的适应性和学习能力。原创 2024-12-16 21:06:29 · 1279 阅读 · 0 评论 -
基于深度强化学习的智能体栅格地图路径规划,提供MATLAB代码
DQN算法通过使用深度神经网络来近似Q值函数,解决了传统Q-learning在处理具有大量状态和动作的复杂问题时的局限性。在DQN中,神经网络的输入是环境的状态,输出是对应于各个可能动作的Q值。原创 2024-12-15 14:46:05 · 1229 阅读 · 0 评论 -
基于深度强化学习的无人车自动路径规划,可以自定义地图,MATLAB代码
DQN算法通过使用深度神经网络来近似Q值函数,解决了传统Q-learning在处理具有大量状态和动作的复杂问题时的局限性。在DQN中,神经网络的输入是环境的状态,输出是对应于各个可能动作的Q值。原创 2024-12-15 12:46:27 · 952 阅读 · 0 评论 -
基于深度Q网络(Deep Q-Network,DQN)的机器人路径规划,可以自定义地图,MATLAB代码
DQN算法通过使用深度神经网络来近似Q值函数,解决了传统Q-learning在处理具有大量状态和动作的复杂问题时的局限性。在DQN中,神经网络的输入是环境的状态,输出是对应于各个可能动作的Q值。原创 2024-12-15 11:27:24 · 963 阅读 · 0 评论 -
RRT(Rapidly-exploring Random Tree)算法求解无人机三维路径规划,MATLAB代码
随着无人机技术的飞速发展,其在军事侦察、民用快递配送、地理测绘、应急救援等众多领域得到了广泛应用。在这些应用场景中,无人机需要在复杂的三维空间环境中自主飞行,安全、高效地从起始点到达目标点,这就使得无人机的三维路径规划成为一个关键技术问题。良好的路径规划能够提高无人机的飞行效率、降低能耗、避免碰撞障碍物以及应对各种突发情况,对于充分发挥无人机的性能和拓展其应用范围具有极为重要的意义。RRT(Rapidly-exploring Random Tree)算法是一种基于采样的路径规划算法。原创 2024-12-14 18:26:37 · 1030 阅读 · 0 评论 -
强化学习Q-learning及其在机器人路径规划系统中的应用研究,matlab代码
Q-learning是一种无模型的强化学习算法,它允许智能体(agent)在没有环境模型的情况下通过与环境的交互来学习最优策略。Q-learning的核心是学习一个动作价值函数(Q-function),该函数映射了每个状态-动作对的预期效用(或回报)。算法的目标是找到使长期累积奖励最大化的策略。原创 2024-12-14 14:00:19 · 1034 阅读 · 0 评论 -
强化学习路径规划:基于栅格地图移动机器人路径规划的SARSA算法,可以更改地图大小及起始点,可以自定义障碍物,MATLAB代码
SARSA(State-Action-Reward-State-Action)是一种在线强化学习算法,用于解决决策问题,特别是在部分可观测的马尔可夫决策过程(POMDPs)中。SARSA算法的核心思想是通过与环境的交互来学习一个策略,该策略能够最大化累积奖励。原创 2024-12-13 21:07:57 · 927 阅读 · 0 评论 -
强化学习路径规划:基于SARSA算法的移动机器人路径规划,可以更改地图大小及起始点,可以自定义障碍物,MATLAB代码
SARSA(State-Action-Reward-State-Action)是一种在线强化学习算法,用于解决决策问题,特别是在部分可观测的马尔可夫决策过程(POMDPs)中。SARSA算法的核心思想是通过与环境的交互来学习一个策略,该策略能够最大化累积奖励。原创 2024-12-13 20:54:02 · 560 阅读 · 0 评论 -
基于强化学习Q-learning算法的栅格地图路径规划算法,可以更改地图大小及起始点,可以自定义障碍物,MATLAB代码
Q-learning是一种无模型的强化学习算法,它允许智能体(agent)在与环境(environment)交互的过程中学习如何通过执行动作(actions)来最大化累积奖励(cumulative rewards)。原创 2024-12-12 21:51:28 · 1784 阅读 · 0 评论 -
基于Q-Learning的机器人栅格地图路径规划,可以更改地图大小及起始点,可以自定义障碍物,MATLAB代码
Q值的更新公式为 Q(s, a) = Q(s, a) + α[r + γ max Q(s’, a’) - Q(s, a)],其中α为学习率,γ为折扣因子,r为奖励,s’为新的状态,a’为新的状态下的最优动作。:通过仿真实验验证了基于QLearning算法的机器人栅格地图路径规划方法的有效性,实验结果表明,该算法能够有效地找到从起始点到目标点的路径,并且随着迭代次数的增加,路径长度逐渐缩短,成功率逐渐提高。:动作是智能体在每个状态下可以执行的操作。例如,到达障碍物的奖励可以设置为-1,到达终点的奖励为1。原创 2024-12-12 21:33:22 · 709 阅读 · 0 评论
分享