整数拆分_题解

文章讨论了如何使用贪心策略来拆分整数序列,确保字典序最小。通过分析,确定拆分次数k的范围并给出代码实现,指出时间复杂度为O(∑√n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题解提供者】吴立强

解法

思路

可以证明,答案必定为:1,2,3,...,k−1,k,g1, 2, 3, ..., k-1, k, g1,2,3,...,k1,k,g。其中有 g=n−∑i=1kg = n-\sum_{i=1}^kg=ni=1k 成立。

首先,基于【贪心】思想,假设当前没用过的最小的数为 xxx,当前已用的数的和为 sumsumsum,那么如果满足 x+1≤(n−sum)−xx + 1 \le (n - sum) - xx+1(nsum)x(用 xxx 这个数,且用完后剩余的数不小于后一个没用过的数),那么从字典序的定义出发,没有理由不使用 xxx,也就是说拆分的数中必定包含 xxx

利用上述推论,我们可以确定 kkk 的取值,且同时保证了拆分出序列满足“字典序”最小。

代码展示

#include <iostream>
using namespace std;

int main() {
	int T;  cin >> T;
	while(T --) {
		int n;  cin >> n;
		for(int i = 1; ; i ++) {  /// 从 1 开始,依次拆分
			if(i + i + 1 > n) break;
			cout << i << ' ';
			n -= i;
		}
		cout << n << ' ' << endl;  /// 剩下的数不支持再拆分
	}
}

算法分析

程序时间复杂度为 O(∑n)O(\sum \sqrt n)O(n),因为 kkk 的取值必定在 n\sqrt nn 级别(∑i=1k=k×(k+1)2\sum_{i=1}^k=\frac{k\times(k+1)}{2}i=1k=2k×(k+1))。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值