
《三桥君 | RAG落地方法论》
文章平均质量分 95
本专栏由AI专家三桥君主理,聚焦RAG(检索增强生成)技术的产业落地全流程,整合场景适配、系统搭建、效果优化、规模部署等核心模块,提供覆盖金融、医疗、法律等行业的实战框架,解决知识密集型场景的智能化最后一公里问题
三桥君
人工智能产品专家 | 打造改变世界产品
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
在AI技术快速迭代的背景下,如何通过RAG技术提升模型的实时性和准确性?从Naive RAG到Modular RAG:AI技术进化的关键路径
从朴素RAG到模块化RAG,RAG技术的演进不仅展示了AI技术在检索与生成领域的巨大潜力,也揭示了技术背后的复杂细节和挑战。朴素RAG作为技术的起点,通过简单的索引、检索和生成步骤,解决了模型知识更新的问题,但其局限性也显而易见。高级RAG通过预检索优化和后检索精炼,显著提升了检索的准确性和生成内容的质量。而模块化RAG则通过模块化设计和灵活组合,将RAG技术推向了新的高度,使其能够应对更加复杂和多样化的应用场景。三桥君认为,RAG技术的未来发展方向将更加注重与其他AI技术的融合,以及应用场景的扩展。原创 2025-08-03 19:41:29 · 694 阅读 · 0 评论 -
Text2SQL:如何通过自然语言直接获取数据,打破技术壁垒?
Text2SQL技术通过自然语言直接生成SQL查询,降低数据获取门槛,助力非技术人员实现数据自助。本文AI专家三桥君解析其核心原理、应用场景及技术挑战。提出三种实现架构(Prompt、LangChain、Vanna)与关键技巧(数据库优化、提示工程、结果验证)。Text2SQL正推动数据查询民主化,使数据“人人可用”。原创 2025-08-02 11:36:02 · 1012 阅读 · 0 评论 -
【三桥君】都说RAG强大无比,为何实际却并非‘开箱即用’还得深度优化?
本文AI专家深入解析检索增强生成(RAG)技术的优化策略。RAG通过结合检索与生成两大步骤提升回答质量,但需系统优化才能发挥最大价值。文章提出五大核心优化手段:1)索引优化,通过分块策略和元数据提升检索精度;2)检索源优化,采用知识图谱增强数据质量;3)Query优化,利用改写和纠错技术明确用户意图;4)Embedding优化,通过模型微调提升语义匹配;5)检索过程优化,采用迭代和自适应策略。通过多个行业案例(如客服系统、电商平台)展示优化效果,强调RAG需要持续监控和迭代改进。原创 2025-08-01 13:40:52 · 996 阅读 · 0 评论