第五届蓝桥杯(国赛)——出栈次序

探讨X星球上特殊交通规则下,16辆甲壳虫车队通过单行检查站后的排列组合问题,利用卡特兰数计算可能的次序数目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述
X 星球特别讲究秩序,所有道路都是单行线。

一个甲壳虫车队,共 16 辆车,按照编号先后发车,夹在其它车流中,缓缓前行。

路边有个死胡同,只能容一辆车通过,是临时的检查站,如图所示。

X星球太死板,要求每辆路过的车必须进入检查站,也可能不检查就放行,也可能仔细检查。

如果车辆进入检查站和离开的次序可以任意交错。那么,该车队再次上路后,可能的次序有多少种?

为了方便起见,假设检查站可容纳任意数量的汽车。

显然,如果车队只有1辆车,可能次序 1 种;2 辆车可能次序 2 种;3 辆车可能次序 5 种。

现在足足有 16 辆车啊,亲!需要你计算出可能次序的数目。

在这里插入图片描述

答案提交
这是一个整数,请通过浏览器提交答案,不要填写任何多余的内容(比如说明性文字)。


答案:35357670


题解
卡特兰数:

看到这样的死胡同,很容易想到一种数据结构——,那么进站相当于push,出站相当于pop

样例解释 (以 3 为例)

  1. 1231 入栈,1 弹出;2 入栈,2 弹出;3 入栈,3 弹出。
  2. 1321 入栈,1 弹出;2 入栈,3 入栈;3 弹出,2 弹出。
  3. 2131 入栈,2 入栈;2 弹出,1 弹出;3 入栈,3 弹出。
  4. 2311 入栈,2 入栈;2 弹出;3 入栈,3 弹出;1 弹出。
  5. 3211 入栈,2 入栈,3 入栈;3 弹出,2 弹出,1 弹出。

可以发现,当数量为 3 时,入栈和出栈的次数都是 3,且无论是第几次操作,push 的次数一定大于等于 pop 的次数。

这时候就可以用 卡特兰数 来求解。

卡特兰数=C2nnn+1卡特兰数= \frac{C_{2n}^n}{n + 1}=n+1C2nn

#include <iostream>
using namespace std;

int c[50][50];

int main()
{
    for (int i = 0; i <= 16 * 2; i ++)
        for (int j = 0; j <= i; j ++)
            if(!j) c[i][j] = 1;
            else c[i][j] = c[i - 1][j - 1] + c[i - 1][j];
            
    cout << c[16 * 2][16] / (16 + 1) << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值