离散数学-----集合

考核内容与考核要求

集合的基本概念,要求达到“领会 ”层次。

集合的概念,了解可数集与不可数集及基数的比较;

集合的表示法,包括列举法、描述法及图示法,了解子集的概念,能判别集合之间的相等、包含等关系。 考核内容与考核要求集合的运算,要求达到“简单应用 ”层次。

集合的基本运算,能正确计算集合的并、交、补及差,能正确求出集合的幂,领会集合运算满足的性质; 集合运算的恒等式,掌握集合运算的相关公式,能运用集合的运算定律进行集合恒等式的证明。

考核内容与考核要求

有序对与笛卡尔积,要求达到“简单应用 ”层次。

有序对,掌握有序对、有序 n 元组的概念,掌握有序对的集合性定义及相关定理;

笛卡尔积,掌握笛卡尔积的定义及性质。

重点

集合的表示,

集合的幂集及集合的运算,

集合恒等式的证明。

难点

集合的运算,

集合恒等式的证明。

4.1 集合的基本概念

知识点 1  集合的概念

集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的 元素。

例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如 A B S T ...表示集合,而用小写字 母如 a b x y ...表示集合的元素。

 x 是集合 S 的元素,则称 x 属于 S ,记为xS 。若 y 不是集合 S 元素,则称 y 不属于 S ,记为 yS 基数

集合中元素的数目称为集合的基数,集合 A 的基数记作 cardA)或 ∣A   。当其为有限大时,集合 A 称为有限 集,反之则为无限集。

一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。

假设有实数 x<y

①【x,y】:方括号表示包括边界,即表示 x  y 之间的数以及 x y

②(X,y):小括号是不包括边界,即表示大于 x 、小于 y 的数4 集合的表示法:

表示集合的方法通常有四种,即列举法、描述法、图像法和符号法。

列举法就是将集合的元素逐一列举出来的方式。例如,光学中的三原色可以用集合{红,绿,蓝}表示; 由四个字  a,b c,d 组成的集合 A 可用 A={a b c,d}表示,如此等等。

描述法的形式为{代表元素 ∣满足的性质} 。由 2 的平方根组成的集合 B 可表示为 B={x|x2=2}

全集 E:限定所讨论的集合都是 E 的子集,相对性子集

 S,T 是两个集合,如果 S 的所有元素都属于 T ,即

在一定范围内,如果所有集合均为某一集合的子集,则称该集合为全集,一般记为 E  U

全集概念相当于论域,例如考虑某大学的系或班级的学生时,该大学的全体学生组成了全集。

幂集

设有集合 A ,由集合 A 所有子集组成的集合,称为集合 A 的幂集。

对于幂集有定理如下:有限集 A 的幂集的基数等于 2 的有限集 A 的基数次幂。即若 A 是具有 n 个元素的有限集,  A 的幂集有 2n 个元素。

设有集合 A={a {b}} ,求集合 A 的幂集 【例】

1.用列举法表示下列集合

1A={a|a P  a<20}

{2 3 5 7 11 13 17 19}

2B={a||a|<4  a 为奇数}

{-3 -1 1 3}

【例】

2.用描述法表示下列集合

1 A={0 2 4   , 200}

2 B={2 4 8   , 1024}     【解】(1{2x|x N  x100}

2{2n|nZ+ n10}

4.2 集合的运算

知识点 1  集合的基本运算

交集定义:由属于 A 且属于 B 的相同元素组成的集合,记作 A B(或 BA),读作“A  B ”(或“B  A ),  AB={x|xA ,且 xB} , 如右图所示。注意交集越交越少。若 A 包含 B ,则 AB=B A B=A

并集定义: 由所有属于集合 A 或属于集合 B 的元素所组成的集合,记作 A B(或 BA),读作“A  B ”(或 B  A ), AB={x|xA ,或 xB} ,如右图所示。注意并集越并越多,这与交集的情况正相反。

补集

补集又可分为相对补集(差集)和绝对补集。

相对补集定义:由属于 A 而不属于 B 的元素组成的集合,称为 B 关于 A 的相对补集,记作 A-B  A\ B,即 A-B={x|x A ,且 x B}

绝对补集定义:A 关于全集合 U 的相对补集称作 A 的绝对补集,记作 A'uA)或~A 。有 U'=Φ;  Φ'=U 例 4   E={ x  | x 是北京某大学学生} A B C D  E  的子集,

A= { x  | x 是北京人}

B= { x  | x 是走读生}

C= { x  | x 是数学系学生}

D= { x  | x 是喜欢听音乐的学生}   试描述下列各集合中学生的特征:

知识点 2  集合运算的恒等式

集合 A=B 的证明(方法有两种)

方法一;根据定义,通过逻辑等值演算证明

方法二;利用已知集合等式或包含式,通过集合演算证明 

 5  证明:

4.3 有序对与笛卡儿积

知识点 1  有序对的基本概念 有序对(序偶):

两个元素 x  y 按一定顺序组成的序列,称为序偶或二元组,记作<x y>或(x y 。其中x 是该序偶的第一元 素,y 是该序偶的第二元素。

序偶与两个元素的集合不同,对集合来说,不要规定元素的次序,例如{x y}{y x}是两个相同的集合,而对序 偶来说,元素的次序是重要的,当 xy 时,<x y><y x>

例如:二维平面上的一个点的坐标(x y)。

实例:平面直角坐标系中点的坐标<3 -4> 有序对性质

1)有序性 <x y>¹<y x>  (当 x¹ y 时)

2<x y>  <u v>  相等的充分必要条件是  1    <2 x+5> = <3y- 4 y> ,求 x y.

   3y- 4 = 2 x+5 = y Þ y = 2 x = - 3 定义

 A B 为集合,用 A 中元素为第一个元素,B 中元素为第二个元素,构 成有序对所有这样的有序对组成的集合叫做 A  B  的笛卡儿积。

 2 A={1 2 3}  B={a b c}

A´B ={<1 a> <1 b> <1 c> <2 a> <2 b> <2 c>

<3 a> <3 b> <3 c>}

B´A ={<a 1> <b 1> <c 1> <a 2> <b 2> <c 2>

<a 3>  <b 3> <c 3>}

知识点 2  笛卡儿积的概念

笛卡儿积的性质

注意

n 元组是个序偶,它的第一元素本身也是序偶,是一个 n-1 元组。

两个集合的笛卡儿积不服从交换律,三个集合的笛卡儿积不服从结合律。

集合(A×B ×C 的元素都是三元组,而集合A×(B×C)的元素不符合三元组的定义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值