考核内容与考核要求
集合的基本概念,要求达到“领会 ”层次。
集合的概念,了解可数集与不可数集及基数的比较;
集合的表示法,包括列举法、描述法及图示法,了解子集的概念,能判别集合之间的相等、包含等关系。 考核内容与考核要求集合的运算,要求达到“简单应用 ”层次。
集合的基本运算,能正确计算集合的并、交、补及差,能正确求出集合的幂,领会集合运算满足的性质; 集合运算的恒等式,掌握集合运算的相关公式,能运用集合的运算定律进行集合恒等式的证明。
考核内容与考核要求
有序对与笛卡尔积,要求达到“简单应用 ”层次。
有序对,掌握有序对、有序 n 元组的概念,掌握有序对的集合性定义及相关定理;
笛卡尔积,掌握笛卡尔积的定义及性质。
重点
集合的表示,
集合的幂集及集合的运算,
集合恒等式的证明。
难点
集合的运算,
集合恒等式的证明。
4.1 集合的基本概念
知识点 1 集合的概念
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的 元素。
例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如 A ,B ,S ,T ,...表示集合,而用小写字 母如 a ,b ,x ,y ,...表示集合的元素。
若 x 是集合 S 的元素,则称 x 属于 S ,记为x∈S 。若 y 不是集合 S 的元素,则称 y 不属于 S ,记为 y∉ S。 基数
集合中元素的数目称为集合的基数,集合 A 的基数记作 card(A)或 ∣A ∣ 。当其为有限大时,集合 A 称为有限 集,反之则为无限集。
一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。
假设有实数 x<y:
①【x,y】:方括号表示包括边界,即表示 x 到 y 之间的数以及 x 和y;
②(X,y):小括号是不包括边界,即表示大于 x 、小于 y 的数【4】 集合的表示法:
表示集合的方法通常有四种,即列举法、描述法、图像法和符号法。
列举法就是将集合的元素逐一列举出来的方式。例如,光学中的三原色可以用集合{红,绿,蓝}表示; 由四个字 母 a,b ,c,d 组成的集合 A 可用 A={a ,b ,c,d}表示,如此等等。
描述法的形式为{代表元素 ∣满足的性质} 。由 2 的平方根组成的集合 B 可表示为 B={x|x2=2}。
全集 E:限定所讨论的集合都是 E 的子集,相对性子集
设 S,T 是两个集合,如果 S 的所有元素都属于 T ,即
在一定范围内,如果所有集合均为某一集合的子集,则称该集合为全集,一般记为 E 或 U。
全集概念相当于论域,例如考虑某大学的系或班级的学生时,该大学的全体学生组成了全集。
幂集
设有集合 A ,由集合 A 所有子集组成的集合,称为集合 A 的幂集。
对于幂集有定理如下:有限集 A 的幂集的基数等于 2 的有限集 A 的基数次幂。即若 A 是具有 n 个元素的有限集, 则 A 的幂集有 2n 个元素。
设有集合 A={。,a ,{b}} ,求集合 A 的幂集 【例】
1.用列举法表示下列集合
(1)A={a|a ∈P 且 a<20}
{2 ,3 ,5 ,7 ,11 ,13 ,17 ,19}
(2)B={a||a|<4 且 a 为奇数}
{-3 ,-1 ,1 ,3}
【例】
2.用描述法表示下列集合
(1) A={0 ,2 ,4 , … , 200}
(2) B={2 ,4 ,8 , … , 1024} 【解】(1){2x|x ∈N 且 x≤100}
(2){2n|n∈Z+且 n≤10}
4.2 集合的运算
知识点 1 集合的基本运算
交集定义:由属于 A 且属于 B 的相同元素组成的集合,记作 A ∩B(或 B∩A),读作“A 交 B ”(或“B 交 A ”), 即 A∩B={x|x∈A ,且 x∈B} , 如右图所示。注意交集越交越少。若 A 包含 B ,则 A∩B=B ,A ∪B=A。

并集定义: 由所有属于集合 A 或属于集合 B 的元素所组成的集合,记作 A ∪B(或 B∪A),读作“A 并 B ”(或 “B 并 A ”),即 A∪B={x|x∈A ,或 x∈B} ,如右图所示。注意并集越并越多,这与交集的情况正相反。

补集
补集又可分为相对补集(差集)和绝对补集。
相对补集定义:由属于 A 而不属于 B 的元素组成的集合,称为 B 关于 A 的相对补集,记作 A-B 或 A\ B,即 A-B={x|x ∈A ,且 x∉ B}。
绝对补集定义:A 关于全集合 U 的相对补集称作 A 的绝对补集,记作 A'或∁ u(A)或~A 。有 U'=Φ; Φ'=U。 例 4 设 E={ x | x 是北京某大学学生} , A ,B ,C ,D 是 E 的子集,
A= { x | x 是北京人},
B= { x | x 是走读生},
C= { x | x 是数学系学生},
D= { x | x 是喜欢听音乐的学生} 。 试描述下列各集合中学生的特征:

知识点 2 集合运算的恒等式
集合 A=B 的证明(方法有两种)
方法一;根据定义,通过逻辑等值演算证明
方法二;利用已知集合等式或包含式,通过集合演算证明
例 5 证明:

4.3 有序对与笛卡儿积
知识点 1 有序对的基本概念 有序对(序偶):
两个元素 x 和 y 按一定顺序组成的序列,称为序偶或二元组,记作<x ,y>或(x ,y) 。其中x 是该序偶的第一元 素,y 是该序偶的第二元素。
序偶与两个元素的集合不同,对集合来说,不要规定元素的次序,例如{x ,y}和{y ,x}是两个相同的集合,而对序 偶来说,元素的次序是重要的,当 x≠y 时,<x ,y>≠<y ,x>
例如:二维平面上的一个点的坐标(x ,y)。
实例:平面直角坐标系中点的坐标<3 ,-4> 有序对性质
1)有序性 <x ,y>¹<y ,x> (当 x¹ y 时)
2)<x ,y> 与 <u ,v> 相等的充分必要条件是 例 1 <2 ,x+5> = <3y- 4 ,y> ,求 x ,y.
解 3y- 4 = 2 ,x+5 = y Þ y = 2 ,x = - 3 定义
设 A ,B 为集合,用 A 中元素为第一个元素,B 中元素为第二个元素,构 成有序对所有这样的有序对组成的集合叫做 A 与 B 的笛卡儿积。

例 2 A={1 ,2 ,3} , B={a ,b ,c}
A´B ={<1 ,a> ,<1 ,b> ,<1 ,c> ,<2 ,a> ,<2 ,b> ,<2 ,c>,
<3 ,a> ,<3 ,b> ,<3 ,c>}
B´A ={<a ,1> ,<b ,1> ,<c ,1> ,<a ,2> ,<b ,2> ,<c ,2>,
<a ,3> , <b ,3> ,<c ,3>}
知识点 2 笛卡儿积的概念
笛卡儿积的性质

注意
n 元组是个序偶,它的第一元素本身也是序偶,是一个 n-1 元组。
两个集合的笛卡儿积不服从交换律,三个集合的笛卡儿积不服从结合律。
集合(A×B) ×C 的元素都是三元组,而集合A×(B×C)的元素不符合三元组的定义。
