考核内容与考核要求
关系与关系的性质,要求达到“领会 ”层次。
关系的定义及表示,掌握关系的定义及三种表示方法,掌握关系的定义域与值域;
关系的性质,理解关系的性质,包括自反性、对称性、传递性、反自反性和反对称性,能进行正确的判断。 考核内容与考核要求
关系的运算,要求达到“领会 ”层次。
关系的常规运算,能正确进行关系的运算;
复合运算,理解复合关系概念,能正确进行关系的复合运算;
关系矩阵的布尔运算,理解关系矩阵的定义,熟练进行关系矩阵的计算;
关系的闭包,理解关系的自反、对称、传递闭包,能正确进行计算、表示及判别。
考核内容与考核要求
等价关系与序关系,要求达到“简单应用 ”层次。
等价关系,掌握等价关系、等价类、划分等概念,能对给定的关系进行正确判别;
序关系,掌握偏序关系、拟序关系及全序关系,能正确画出表示偏序关系的哈斯图,能给定的关系正确判断,正 确求出偏序关系中的极大(小)元,最大(小)元。
考核内容与考核要求
函数的概念,要求达到“领会 ”层次。
函数的概念,掌握函数的概念,能正确判别所给关系是否为函数,是否是单射、满射和双射等;
复合函数,理解复合函数概念,能正确计算函数的复合。
重点
集合上的关系与运算 集合上的函数与运算 难点
等价关系的判定与证明 相容关系的判定与证明 序关系的判定与证明
5.1 关系及关系的性质
知识点 1 关系的定义及表示 关系
设 A ,B 是任意两个集合,A×B 的子集 R 称为从 A 到 B 的二元关系。属于 R 的序偶<a ,b> ,称 a 与 b 有关系 R, 记作 aRb;不属于 R 的序偶<a ,b> ,则称 a 与 b 没有关系 R ,记作 aRb。
对集合 A ,可构成 A 到 A 的二元关系 R ,或称 R 是集合 A 上的关系。
关系
关系与笛卡尔积是不同的。关系可能在两个集合的部分元素之间有定义,没有定义的元素之间不存在关系。而笛 卡尔积是两个集合全部元素之间都有定义。
例 设 B={1 ,2 ,3 ,6} ,求 B 上整除关系。

几个特殊关系
对任意的集合 A,

若 A 上的关系 R=。,称为 A 上的空关系。
例 设 A={0, 1,2} ,求 A 上的全关系 EA 和恒等关系 IA

前域和值域、域
设 R 为从集合 A 到 B 的二元关系,X∈A,y∈B ,所有<X,y>∈R 的 x 组成集合称为 R 的前域,记为 domR

所有<X,y>∈R 的 y 组成的集合称作 R 的值域,记为 ranR

R 的前域和值域一起称作 R 的域,记作 FLDR 即,FLDR= domRUranR 前域也称定义域
例 1 R={<1 ,2> ,<1 ,3> ,<2 ,4> ,<4 ,3>} , 则 domR={1 , 2 , 4}
ranR={2 , 3 , 4}
fldR={1 , 2 , 3 , 4}
例 设 A={a ,b ,c ,e} ,B={a ,b ,d},
在 A×B 上关系 R 定义为:R={<a ,b> ,<a ,d> ,<b ,d> ,<c ,d>}。 求:domR ,ranR ,fldR。
解:domR={a ,b ,c},
ranR={b ,d},
fldR={a ,b ,c ,d}。
关系的表示
集合表示:列出有序对的集合。
申>关系矩阵表示:,其中 rij=

关系图表示:一种比较直观的表示方法。
例 设 A={2,0,3,6} ,求 A 上的小于等于关系 LEA 和 A 上的整除关系 DA ,并分别用以上三种方式表示。 解 集合表示:

关系矩阵表示:

关系图表示:

例 1 设 X={X1 ,x2 ,x3 ,x4} ,Y={y1 ,y2 ,y3} ,R={<x1 ,y1> ,<x1 ,y3> ,<x2 ,y2> ,<X2 ,y3 , <x3 ,y1> ,<x4, y1> ,<X4 ,y2>} ,求 R 的关系矩阵 MR
5.2 关系的运算
知识点 1 关系的常规运算
若 Z 和S 是从集合 X 到 Y 的两个关系,则 Z ,S 的并、交、补、差仍是 X 到 Y 的关系。
因为关系也是集合,它的元素是序偶,所以集合的各种运算都可以应用于同一域上的关系运算。 逆关系。设 R 是从 X 到 Y 的二元关系,则从集合 Y 到集合 X 的关系 R-1(或 RC)称为 R 的逆关系。

例 设集合 X={a ,b ,c} ,集合 Y={x ,y ,z} ,R 是集合 X 到集合 Y 的关系 R={<a ,x> ,<b ,y> ,<c ,z>} ,求从集合 Y 到集合 X 的逆关系。

定理 设 R 、R1 、R2 都是从 A 到 B 的二元关系,则下列各式成立:

知识点 2 复合关系
关系的复合
设 R 为 A 到 B 的关系,S 为从 B 到 C 的关系,则复合关系 R °S 是从集合 A 到集合 C 的关系。

例 设 A={a,b,c} ,B={x,y ,} ,C={1,2,3} ,R1 是从集合 A 到集合 B 的关系,R2 是从集合 B 到集合 C 的关系,有


关系的幂
设 R 是集合 A 上的关系,R 可以自身复合形成集合 A 上的一个新关系,如 R °R, R °R °R, R °R °… , °R(m 个 R), 可分别记作 R2 ,R3 ,Rm,
知识点 3 关系矩阵的布尔运算
(1)定义法:对于集合表示的关系 R ,计算 Rn 就是 n 个 R 左复合。
(2)矩阵乘法:矩阵表示就是 n 个矩阵相乘,其中相加采用逻辑加。 (线性代数,逻辑乘法)。
(3)关系图法:若点 a 经 k(k=1 ,2 , … , n)条线可到达点 b ,则在的关系图 Mk 上,a 到 b 有线相连。 例 3 设 A={a ,b ,c ,d} , R={<a ,b> ,<b ,a> ,<b ,c> ,<c ,d>},
求 R 的各次幂,分别用矩阵和关系图表示。
解 R 与 R2 的关系矩阵分别为
仅当A 有回路时,上述结论成立。
复合关系的矩阵表示

例 设集合 A={1,2,3,4,B={2,3,4},C={1,2,3},R 是从集合 A 到集合 B 的关系,S 是从集合 B 到集合 C 的关系。R={<2,4>, <3,3> ,<4,2>},

知识点 4 关系的闭包
关系的闭包运算
关系的闭包运算是将已知的关系 R ,增加必要的序偶组成新的关系 R ’,使 R ’包含 R 并且具备一定的性质(如 自反性、对称性、传递性等),而且添加的序偶要尽可能少。
一、逻辑运算方法:设 R 是 A 上的任一关系,则
(1)r (R) = R ∪ IA
(2)s (R) = R-1 ∪R
(3)t (R) = R ∪R2 ∪R3 ∪ … ∪Rn-1
二、矩阵形式:(M 为 R 的关系矩阵)
(1) Mr = M + E(单位矩阵)
(2) Ms = M + M '(M '是 M 的转置)
(3) Mt = M+M2 +….+Mn-1 其中“+ ”均表示“逻辑加 ” 矩阵运算:
R={<a , b> ,<b ,a> ,<b , c> ,<c , d>}


关系图法:
(1) 自反闭包图:对没有加环的点加环
(2) 对称闭包图:单边的加方向相反的边
(3) 传递闭包图:若 Ai 经过两条或两条以上的 边可到达 Aj ,且无边<Ai ,Aj>则加边<Ai ,Aj>

【例】 设 A={a ,b ,c ,d} ,A 上的关系
R={<a , b> ,<b ,a> ,<b , c> ,<c , d>} 求 r (R),s (R) 和 t (R)
解:1.逻辑求法:
r(R) = R ∪ IA
= R∪{<a ,a> ,<b ,b><c ,c> ,<d ,d>}
={<a , b> , <b , a> , <b , c> ,<c , d> , <a , a> , <b , b> , <c , c> , <d , d>} R={<a ,b> ,<b ,a> ,<b , c> ,<c , d>}
s (R) = R ∪R-1
= R∪{<b ,a> ,<a ,b><c ,b> ,<d ,c>}
={<a , b> , <b , a> , <b , c> ,<c , d> , <c , b> , <d , c>}
t (R) = R ∪R 2 ∪R 3 ∪ … ∪R n-1
= R∪{<a ,a> ,<a ,c><b ,b> ,<b ,d>} ∪{<a ,b> ,<a ,d><b ,a> ,<b ,c>}
={<a , b> , <b ,a> ,<b ,c> ,<c ,d> ,<a , a> ,<a ,c>
<b , b> ,<b ,d> ,<a , d>}
5.3 等价关系与序关系
知识点 1 等价关系
一、相容关系
设 R 是集合 A 上的关系,若 R 是自反的和对称的,则称 R 是 A 上的相容关系。
相容关系的关系矩阵是主对角线元素全为 1 的对称矩阵。
特殊的关系 覆盖
二、等价关系
设 R 为集合 A 上的一个关系,若 R 是自反的、对称的和传递的,则 R 是等价关系。 划分
给定非空集合 A ,设有集合 S={S1 ,S2…Sm} ,其中

划分的元素 Si 称为划分的块。
设对应于划分π_i 的等价关系 Ri ,i=1 ,2 ,...5 ,则有
R1={(<1 ,1> ,<1 ,2> ,<1 ,3> ,<2 ,2><2 ,1>@<2 ,3> ,<3 ,3> ,<3 ,1> ,<3 ,2>)} R2={<1 ,1> ,<2 ,2> ,<2 ,3> ,<3 ,3><3 ,2>}
R3={<2 ,2> ,<1 ,1> ,<1 ,3> ,<3 ,3><3 ,1>} R4={<3 ,3> ,<1 ,1> ,<1 ,2> ,<2 ,2><2 ,1>} R5={<1 ,1> ,<2 ,2> ,<3 ,3>}
三、等价类
等价类
称为元素 a 形成的 R 等价类。
例 设 R 是模 4 同余关系,则
[0]R=[-4]R=[4]R=[8]R=… , [1]R=[-7]R=[-3]R=[5]R=…, [2]R=[-6]R=[-2]R=[6]R=…, [3]R=[-5]R=[-1]R=[7]R=…。
设 R 是非空集合 A 上的等价关系,对于 x ,y∈A ,有 xRy 当且仅当
设 R 是集合 A 上的等价关系,其等价类集合 称作 A 关于 R 商集,记作 A/ R,
例如,同余模 4 关系 R 就构成商集 Z/ R

集合 A 上的任一等价关系 R 可以唯一确定 A 上的一个划分:商集 A/ R 就是这个划分;
任一划分,可以唯一地确定 A 上的等价关系:定义一个关系 R ,aRb 当且仅当 a ,b 在同一分块中,R 就是这个等 价关系。
即集合 A 上给出一个划分和给出一个等价关系是一一对应的。
相容关系和等价关系区别与联系 知识点 2 序关系
相容关系和覆盖 |
①是自反的、对称的 ②集合中的相容关系能构成该集合的覆盖 ③相容关系不一定是等价关系 ④覆盖不一定是划分 |
等价关系和划分 |
①是自反的、对称的和传递的 ②集合中的等价关系能构成该集合的划分 ③等价关系一定是相容关系 ④划分一定是覆盖 |
偏序关系
设 R 是集合 A 上的关系,如果 R 是满足自反性、反对称性和传递性,则称 R 是 A 上的一个偏序关系,并记作
偏序集<A , 可以用哈斯图表示,实际上是对关系图的简化。
用结点表示 A 中元素;因为偏序关系是自反的,所以可以将每个结点的自环省略;对于 a,b∈A,b 盖住 a ,则将结
点 a 画在结点 b 之下,在 a 与 b 之间用一直线相连,方向自下而上,但箭头省略。 例 设 A 是正整数 m=12 的正因子的集合,并设 为整除关系,求 COVA 及哈斯图。
解:m=12 其因子集合 A={1 ,2 ,3 ,4 ,6 ,12},
< ={<1 ,2> ,<1 ,3> ,<1 ,4> ,<1 ,6> ,<1 ,12> ,<2 ,4> ,<2 ,6> ,<2 ,12> ,<3 ,6> ,<3 ,12> ,<4 ,12> ,<6, 12> ,<1 ,1> ,<2 ,2> ,<3 ,3> ,<4 ,4> ,<6 ,6> ,<12 ,12>},
COVA={<1 ,2> ,<1 ,3> ,<2 ,4> ,<2 ,6>,
<3 ,6> ,<4 ,12> ,<6 ,12>}。
哈斯图如下

整除关系的最小元是 1 ,最大元是 12;如果取子集{2 ,3 ,6} ,最小元不存在,最大元是 6。
整除关系的极小元是 1 ,极大元是 12;如果取子集{2 ,3 ,6} ,极小元是 2 ,3 ,极大元是 6。 最小元、最大元、极小元、极大元
极小元 |
1 |
极大元 |
8,12 |
最小元 |
1 |
最大元 |
无 |
对于子集{2 ,3 ,6}
极小元 |
2,3 |
极大元 |
6 |
最小元 |
无 |
最大元 |
6 |

某偏序集的哈斯图
集合 |
上界 |
上确界 |
下界 |
下确界 |
{a ,b ,c} |
e ,f ,j, h |
e |
a |
a |
{j ,h} |
无 |
无 |
a ,b ,c ,d, e ,f |
f |
{a ,c ,d ,f} |
f ,j ,h |
f |
a |
a |
{b ,d ,g} |
g ,h |
g |
a ,b |
b |
上下界及上下确界可能不属于所讨论的集合

某偏序集的哈斯图
5.4 函数
知识点 1 函数的概念 函数与关系有区别:
函数 F 的定义域是 X ,不是 X 的真子集。即函数要对定义域中的所有元素都有定义,而不能只对于某个真子集进 行定义。关系 R 可能只对定义域中的若干元素有定义。
一个 X∈X 只能对应唯一的 y∈Y ,即如果<x ,y>∈f ,<x,z>∈f ,必有 y=z 。而关系 R 中,对同一个 x ,可以存在多 个 y ,均满足<X,y>∈R。
函数相等:
【例】设 X={1 ,2 ,3} ,Y={a ,b ,c} ,则从 X 到 Y 的函数共有 8 个。 满射(映上)、单射(入射)、双射一一对应)
给定函数,
若 ranf=Y 称 f 是满射函数。
若对任意 x1 ,x2 ∈X ,若 x1≠x2 时必有 f(x1) ≠f(x2),则称 f 为入射函数。 若函数 f 既是满射的又是入射的,则称 f 为双射函数。
单射就是只能一对一,不能多对一。
满射只要 Y 中的元素在 X 中都能找到原像就行了(一对一,多对一都行)。 双射就是既是单射又是满射(一个对一个,每个都不漏掉)。

逆函数
设是从 X 到 Y 的双射函数,则 f 逆关系是 f 的逆函数,记为 f-1
任给一个函数,它的逆不一定是函数,只是一个二元关系。仅当函数是双射函数时才存在反函数,所以双射函数 也称为可逆的,它的反函数也称为逆函数。
一个函数要有逆函数,必须是双射的;否则能保证有逆关系存在,但没有逆函数存在。

知识点 2 复合函数
复合函数
两个函数的复合运算本质上就是两个关系的复合;

如果 f 的值域不是 g 的定义域的子集,则无法定义 f °g
函数的合成运算与关系的合成运算一样是可结合的,是不可交换的。 【例】设集合 X ,Y ,Z,
X={x1 ,x2 ,x3 ,x4} ,Y={y1 ,y2 ,y3 ,y4} ,Z={z1 ,z2 ,z3 ,z4}
函数 f:X→Y ,g:Y ⟶Z 的定义为
f={<x1 ,y2> ,<x2 ,y1> ,<x3 ,y3> ,<x4 ,y5>}
g={<y1 ,z1> ,<y2 ,z2> ,<y3 ,z3> ,<y4 ,z3>,
F(g(x))={<x1 ,z2> ,<x2 ,z1> ,<x3 ,z3> ,<x4 ,z2>} <y5 ,z2>}
复合函数性质
设函数 f:X →Y,g:Y →Z ,复合函数 f °g(x)=g(f(x)); 若 g 和 f 是满射的,则 f °g(x)是满射的;
若 g 和是入射的,则 f °g(x)是入射的;
若 g 和 f 是双射的,则 ∫ °g(x)是双射的。