离散数学---关系与函数

考核内容与考核要求

关系与关系的性质,要求达到“领会 ”层次。

关系的定义及表示,掌握关系的定义及三种表示方法,掌握关系的定义域与值域;

关系的性质,理解关系的性质,包括自反性、对称性、传递性、反自反性和反对称性,能进行正确的判断。 考核内容与考核要求

关系的运算,要求达到“领会 ”层次。

关系的常规运算,能正确进行关系的运算;

复合运算,理解复合关系概念,能正确进行关系的复合运算;

关系矩阵的布尔运算,理解关系矩阵的定义,熟练进行关系矩阵的计算;

关系的闭包,理解关系的自反、对称、传递闭包,能正确进行计算、表示及判别。

考核内容与考核要求

等价关系与序关系,要求达到“简单应用 ”层次。

等价关系,掌握等价关系、等价类、划分等概念,能对给定的关系进行正确判别;

序关系,掌握偏序关系、拟序关系及全序关系,能正确画出表示偏序关系的哈斯图,能给定的关系正确判断,正 确求出偏序关系中的极大(小)元,最大(小)元。

考核内容与考核要求

函数的概念,要求达到“领会 ”层次。

函数的概念,掌握函数的概念,能正确判别所给关系是否为函数,是否是单射、满射和双射等;

复合函数,理解复合函数概念,能正确计算函数的复合。

重点

集合上的关系与运算 集合上的函数与运算 难点

等价关系的判定与证明 相容关系的判定与证明 序关系的判定与证明

5.1  关系及关系的性质

知识点 1  关系的定义及表示 关系

 A B 是任意两个集合,A×B 的子集 R 称为从 A  B 的二元关系。属于 R 的序偶<a b> ,称 a  b 有关系 R 记作 aRb;不属于 R 的序偶<a b> ,则称 a  b 没有关 R ,记作 aRb

对集合 A ,可构成 A  A 的二元关系 R ,或称 R 是集合 A 上的关系。

关系

关系与笛卡尔积是不同的。关系可能在两个集合的部分元素之间有定义,没有定义的元素之间不存在关系。而笛 卡尔积是两个集合全部元素之间都有定义。

例 设 B={1 2 3 6} ,求 B 上整除关系。

几个特殊关系

对任意的集合 A

 A 上的关系 R=,称为 A 上的空关系。

例 设 A={0, 1,2} ,求 A 上的全关系 EA 和恒等关系 IA

前域和值域、域

 R 为从集合 A  B 的二元关系,XA,yB ,所有<X,y>R  x 组成集合称为 R 的前域,记为 domR

所有<X,y>R  y 组成的集合称作 R 的值域,记为 ranR

R 的前域和值域一起称作 R 的域,记作 FLDR 即,FLDR= domRUranR 前域也称定义域

 1     R={<1 2> <1 3> <2 4> <4 3>}   domR={1  2  4}

ranR={2  3  4}

fldR={1  2  3  4}

例 设 A={a b c e} B={a b d}

 A×B 上关系 R 定义为:R={<a b> <a d> <b d> <c d>} 求:domR ranR fldR

解:domR={a b c}

ranR={b d}

fldR={a b c d}

关系的表示

集合表示:列出有序对的集合。

>关系矩阵表示其中 rij=

关系图表示:一种比较直观的表示方法。

例 设 A={2,0,3,6} ,求 A 上的小于等于关系 LEA  A 上的整除关系 DA ,并分别用以上三种方式表示。 解 集合表示:

关系矩阵表示:

关系图表示:

 1  X={X1 x2 x3 x4} Y={y1 y2 y3} R={<x1 y1> <x1 y3> <x2 y2> <X2 y3 <x3 y1> <x4 y1> <X4 y2>} ,求 R 的关系矩阵 MR

5.2  关系的运算

知识点 1  关系的常规运算

 Z S 是从集合 X  Y 的两个关系,则 Z S 的并、交、补、差仍是 X  Y 的关系。

因为关系也是集合,它的元素是序偶,所以集合的各种运算都可以应用于同一域上的关系运算。 逆关系。 R 是从 X  Y 的二元关系,则从集合 Y 到集合 X 的关系 R-1(或 RC)称为 R 的逆关系。

例 设集合 X={a b c} ,集合 Y={x y z} R 是集合 X 到集合 Y  的关系 R={<a x> <b y> <c z>} ,求从集合 Y 到集合 X 的逆关系。

定理 设 R R1 R2 都是从 A  B  的二元关系,则下列各式成立:

知识点 2  复合关系

关系的复合

 R  A  B 的关系,S 为从 B  C 的关系,则复合关系 R °S 是从集合 A 到集合 C 的关系。

例 设 A={a,b,c} B={x,y } C={1,2,3} R1 是从集合 A 到集合 B  的关系,R2 是从集合 B 到集合 C 的关系,有

关系的幂

 R 是集合 A 上的关系,R 可以自身复合形成集合 A 上的一个新关系,如 R °R, R °R °R, R °R °… , °Rm  R), 可分别记作 R2 R3 Rm

知识点 3  关系矩阵的布尔运算

1)定义法:对于集合表示的关系 R ,计算 Rn   就是 n  R 左复合。

2)矩阵乘法:矩阵表示就是 n 个矩阵相乘,其中相加采用逻辑加。  (线性代数,逻辑乘法)。

3)关系图法:若点 a  kk=1 2   , n)条线可到达点 b ,则在的关系图 Mk 上,a  b 有线相连。  3   A={a b c d}  R={<a b> <b a> <b c> <c d>}

 R 的各次幂,分别用矩阵和关系图表示。

 R  R2 的关系矩阵分别为

仅当A 有回路时,上述结论成立。

复合关系的矩阵表示

例 设集合 A={1,2,3,4B={2,3,4}C={1,2,3}R 是从集合 A 到集合 B  的关系,S 是从集合 B 到集合 C  的关系。R={<2,4> <3,3>  <4,2>}

知识点 4  关系的闭包

关系的闭包运算

关系的闭包运算是将已知的关系 R ,增加必要的序偶组成新的关系 R ’,使 R ’包含 R 并且具备一定的性质(如 自反性、对称性、传递性等),而且添加的序偶要尽可能少。

一、逻辑运算方法:设 R  A 上的任一关系,则

1r  R = R  IA

2s  R = R-1 R

3t  R = R R2 R3   Rn-1

二、矩阵形式:(M  R 的关系矩阵)

1 Mr = M + E(单位矩阵)

2 Ms = M + M 'M ' M 的转置)

3 Mt = M+M2 +.+Mn-1   其中“+ ”均表示“逻辑加  矩阵运算:

R={<a  b> <b a> <b c> <c  d>}

关系图法:

1 自反闭包图:对没有加环的点加环

2) 对称闭包图:单边的加方向相反的边

3) 传递闭包图:若 Ai 经过两条或两条以上的 边可到达 Aj ,且无边<Ai Aj>则加边<Ai Aj>

【例】  A={a b c d} A 上的关系

R={<a  b> <b a> <b c> <c  d>}  r  R),s  R  t  R

解:1.逻辑求法:

rR = R  IA

= R{<a a> <b b><c c> <d d>}

={<a  b>  <b  a>  <b  c> <c  d>  <a  a>  <b  b>  <c  c>  <d  d>} R={<a b> <b a> <b c> <c  d>}

s  R = R R-1

= R{<b a> <a b><c b> <d c>}

={<a  b> <b  a>  <b  c> <c  d>  <c  b>  <d  c>}

t  R = R R 2 R 3   R n-1

= R{<a a> <a c><b b> <b d>} {<a b> <a d><b a> <b c>}

={<a  b> <b a> <b c> <c d> <a  a> <a c>

<b  b> <b d> <a  d>}

5.3 等价关系与序关系

知识点 1  等价关系

一、相容关系

 R 是集合 A 上的关系,若 R 是自反的和对称的,则称 R  A 上的相容关系。

相容关系的关系矩阵是主对角线元素全为 1 的对称矩阵。

特殊的关系 覆盖

二、等价关系

 R 为集合 A 上的一个关系,若 R 是自反的、对称的和传递的,则 R 是等价关系。 划分

给定非空集合 A ,设有集合 S={S1 S2Sm} ,其中

划分的元素 Si 称为划分的块。

设对应于划分π_i  的等价关系 Ri i=1 2 ...5 则有

R1={(<1 1> <1 2> <1 3> <2 2><2 1>@<2 3> <3 3> <3 1> <3 2>)} R2={<1 1> <2 2> <2 3> <3 3><3 2>}

R3={<2 2> <1 1> <1 3> <3 3><3 1>} R4={<3 3> <1 1> <1 2> <2 2><2 1>} R5={<1 1> <2 2> <3 3>}

三、等价类

等价类

称为元素 a 形成的 R 等价类。

例 设 R 是模 4  同余关系,则

[0]R=[-4]R=[4]R=[8]R=  [1]R=[-7]R=[-3]R=[5]R=…, [2]R=[-6]R=[-2]R=[6]R=…, [3]R=[-5]R=[-1]R=[7]R=…。

 R 是非空集合 A 上的等价关系,对于 x yA ,有 xRy 当且仅当

 R 是集合 A 上的等价关系,其等价类集合           称作 A 关于 R 商集,记作 A/ R

例如,同余模 4 关系 R 就构成商集 Z/ R

集合 A 上的任一等价关系 R 可以唯一确定 A 上的一个划分:商集 A/ R 就是这个划分;

任一划分,可以唯一地确定 A 上的等价关系:定义一个关系 R aRb 当且仅当 a b 在同一分块中,R 就是这个等 价关系。

即集合 A 上给出一个划分和给出一个等价关系是一一对应的。

相容关系和等价关系区别与联系 知识点 2  序关系

相容关系和覆盖

是自反的、对称的

②集合中的相容关系能构成该集合的覆盖

③相容关系不一定是等价关系

④覆盖不一定是划分

等价关系和划分

①是自反的、对称的和传递的

②集合中的等价关系能构成该集合的划分

③等价关系一定是相容关系

④划分一定是覆盖

偏序关系

 R 是集合 A 上的关系,如果 R 是满足自反性、反对称性和传递性,则称 R  A 上的一个偏序关系,并记作

偏序集<A ,  可以用哈斯图表示,实际上是对关系图的简化。

用结点表示 A 中元素;因为偏序关系是自反的,所以可以将每个结点的自环省略;对于 a,bA,b 盖住 a ,则将结

 a 画在结点 b 之下,在 a  b 之间用一直线相连,方向自下而上,但箭头省略。  例 设 A 是正整数 m=12  的正因子的集合,并设   为整除关系,求 COVA 及哈斯图。

解:m=12 其因子集合 A={1 2 3 4 6 12}

< ={<1 2> <1 3> <1 4> <1 6> <1 12> <2 4> <2 6> <2 12> <3 6> <3 12> <4 12> <6 12> <1 1> <2 2> <3 3> <4 4> <6 6> <12 12>}

COVA={<1 2> <1 3> <2 4> <2 6>

<3 6> <4 12> <6 12>}

哈斯图如下

整除关系的最小元是 1 ,最大元是 12;如果取子集{2 3 6} ,最小元不存在,最大元是 6

整除关系的极小元是 1 ,极大元是 12;如果取子集{2 3 6} ,极小元是 2 3 ,极大元是 6 最小元、最大元、极小元、极大元

极小元

1

极大元

8,12

最小元

1

最大元

对于子集{2 3 6}

极小元

2,3

极大元

6

最小元

最大元

6

某偏序集的哈斯图

集合

上界

上确界

下界

下确界

{a b c}

e f j

h

e

a

a

{j h}

a b c d

e f

f

{a c d f}

f j h

f

a

a

{b d g}

g h

g

a b

b

上下界及上下确界可能不属于所讨论的集合

某偏序集的哈斯图

5.4  函数

知识点 1  函数的概念 函数与关系有区别:

函数 F 的定义域是 X ,不是 X 的真子集。即函数要对定义域中的所有元素都有定义,而不能只对于某个真子集进 行定义。关系 R 可能只对定义域中的若干元素有定义。

一个 XX 只能对应唯一的 yY ,即如果<x y>f <x,z>f ,必有 y=z 。而关系 R 中,对同一个 x ,可以存在多  y ,均满足<X,y>R

函数相等:

【例】设 X={1 2 3} Y={a b c} ,则从 X  Y 的函数共有 8 个。 满射(映上)、单射(入射)、双射一一对应)

给定函数,

 ranf=Y  f 是满射函数。

若对任意 x1 x2 X ,若 x1x2 时必有 fx1 fx2),则称 f 为入射函数。 若函数 f 既是满射的又是入射的,则称 f 为双射函数。

单射就是只能一对一,不能多对一。

满射只要 Y 中的元素在 X 中都能找到原像就行了(一对一,多对一都行)。 双射就是既是单射又是满射(一个对一个,每个都不漏掉)。

逆函数

设是从 X  Y 的双射函数,则 f 逆关系是 f 的逆函数,记为 f-1

任给一个函数,它的逆不一定是函数,只是一个二元关系。仅当函数是双射函数时才存在反函数,所以双射函数 也称为可逆的,它的反函数也称为逆函数。

一个函数要有逆函数,必须是双射的;否则能保证有逆关系存在,但没有逆函数存在。

知识点 2  复合函数

复合函数

两个函数的复合运算本质上就是两个关系的复合;

如果 f 的值域不是 g 的定义域的子集,则无法定义 f °g

函数的合成运算与关系的合成运算一样是可结合的,是不可交换的。 【例】设集合 X Y Z

X={x1 x2 x3 x4} Y={y1 y2 y3 y4} Z={z1 z2 z3 z4}

函数 fX→Y gY Z 的定义为

f={<x1 y2> <x2 y1> <x3 y3> <x4 y5>}

g={<y1 z1> <y2 z2> <y3 z3> <y4 z3>

Fgx))={<x1 z2> <x2 z1> <x3 z3> <x4 z2>} <y5 z2>}

复合函数性质

设函数 f:X Y,g:Y Z ,复合函数 f °gx=gfx));  g  f 是满射的,则 f °gx)是满射的;

 g 和是入射的,则 f °gx)是入射的;

 g  f 是双射的,则  °gx)是双射的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值