
语义建模
文章平均质量分 95
阿牛大牛中
总得有盼头,好过每天都犯愁。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LLM2Rec-新国立-KDD2025-微调LLM获得蕴含协同信息的embedding
整体任务也是协同与语义的结合。现有探索有两种:- 一种是**纯文本法**:只用文本(商品介绍等)做 embedding,能泛化但丢了 CF 信号。- 另一种是**混合法**:试图融合文本和 CF 信号,比如把 ID 向量和文本向量拼接、用文本指导 ID 训练、或设计融合网络(比如cross-attention)。【CCFRec 也算这类吧】本质还是主要依赖 ID 向量。作者认为:最好的 embedding model,应该 “天生” 就能同时捕获 CF 信号和 语义知识,而不是原创 2025-07-27 15:27:59 · 1096 阅读 · 0 评论 -
CCFRec-人大高瓴-KDD2025-序列推荐中充分融合协同信息与语义信息
摘要:中国人民大学高瓴学院的KDD2025论文《Bridging Textual-Collaborative Gap through Semantic Codes for Sequential Recommendation》提出CCFRec模型,解决序列推荐中文本与协同信息融合不足的问题。传统方法依赖ID协同过滤,忽视商品文本内容,而现有融合方法常导致信息割裂。CCFRec创新性地引入多视图语义码(sid),将商品属性(如标题、品牌)编码为可学习的语义ID,既保留协同关系,又增强内容表征。模型通过Code原创 2025-07-26 17:47:22 · 631 阅读 · 0 评论