Python入门之——Pandas选择数据

bg:被一些事情纠结了几天才缓过来,又开始学了。Pandas经常和numpy一起使用,也都大同小异。

#%%
import pandas as pd
import numpy as np
from numpy.conftest import dtype
from prometheus_client.samples import Timestamp

s = pd.Series([1,3,5, np.nan, 6])
s


datas = pd.date_range('20160101', periods=6)    # panda中的日期序列
datas

df = pd.DataFrame(np.random.randn(6,4), index=datas, columns=list('ABCD'))  # 定义六行四列,带上行名和列名
df

df1 = pd.DataFrame(np.arange(12).reshape((3,4)))    # panda整成行列
df1

df2 = pd.DataFrame({
    'A': 1.,  # 标量值会自动广播到所有行
    'B': pd.Timestamp('20250304'),  # 时间戳
    'C': pd.Series(1, index=list(range(4)), dtype='float32'),  # Series
    'D': np.array([3]*4, dtype='int32'),  # NumPy数组
    'E': pd.Categorical(['aaa', 'bbb', 'ccc', 'ddd']),  # 分类数据
    'F': 'foo'  # 字符串
})  # 键值对的形式构建表格
df2

df2.describe()

df2.T   # 矩阵转置
df2.sort_index(axis=1, ascending=False)      # 按列明倒叙排序
df2.sort_values(by=['E'], ascending=False)      # 按照第E列进行排序

datas = pd.date_range('20160101', periods=6)
df = pd.DataFrame(np.arange(24).reshape(6, 4), index=datas, columns=list('ABCD'))
df
#%%
df.A
df.loc['20160101']      # loc应该就是这一行的单词
df.loc['20160101', ['A', 'B']]      # 行和列的信息
df.iloc[3:5, 1:3]       # 3-5行、4-6列 *&*注意它的下标算是比较奇葩的:0开始,左闭右开
#%%
df.iloc[[1,3,5], 1:3]       # 逐个的筛选出来(1、3、5行,1-2列)
#%%
df[df.A > 8]    # A这一列大于8的
#%%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值