
生物
文章平均质量分 76
xiao5kou4chang6kai4
xiao5kou4chang6kai4 的博客
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
ChatGPT-4o在临床医学日常生活、工作与学习、课题申报、论文选题、实验方案设计、实验数据统计分析与可视化
ChatGPT-4o科研必备GPTs汇总介绍(寻找好用的GPTs模型、提示词优化、生成思维导图、生成PPT、生成视频、制定个性化的学习计划、检索论文、总结论文内容、总结视频内容、撰写论文、论文翻译、论文润色与修改、参考文献格式管理、论文评审、数据分析、生成代码、代码调试等)1、课题申请书撰写技巧及要点剖析(项目名称、关键词、摘要、立项依据、参考文献、研究目标、研究内容、研究方案、关键科学问题、可行性分析、创新点与特色之处、预期研究成果、工作基础等)选择、交叉、变异三个算子的作用分别是什么?原创 2025-07-25 15:21:50 · 590 阅读 · 0 评论 -
生命周期评价理论、模型构建与实践操作深度解析
生命周期分析是一种分析工具,它可帮助人们进行有关如何改变产品或如何设计替代产品方面的环境决策,即由更清洁的工艺制造更清洁的产品。例如,生命周期分析的结果表明,某种产品能耗低,寿命长,不含有毒化学物质,其包装及残余物体积小,从而占用较少的填埋场空间,这就成为我们进行产品选择的依据。生命周期分析 (Life Cycle Analysis, LCA) 是评价一个产品系统生命周期整个阶段——从原材料的提取和加工,到产品生产、包装、市场营销、使用、再使用和产品维护,直至再循环和最终废物处置——的环境影响的工具。原创 2025-06-03 15:51:36 · 615 阅读 · 0 评论 -
R-META分析,要是早看见这个就好了
本内容通过AI大模型全程助力Meta分析,从文献计量分析研究热点变化,寻找科学问题、R-Meta多手段全流程分析与Meta高级绘图、多层次分层嵌套模型构建与Meta回归诊断、贝叶斯网络、MCMC参数优化及不确定性分析、Meta数据缺失值处理的六种方法与结果可靠性分析、Meta加权机器学习与非线性Meta分析等方面讲解,每个专题,每一部分结合多个典型案例实践,深受大家好评。1)Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)3)敏感性分析、增一法、留一法、增一法、Gosh图。原创 2025-04-29 17:00:37 · 737 阅读 · 0 评论 -
Hmsc包开展群落数据联合物种分布模型分析通用流程(Pipelines)
本次内容将以Hmsc包为对象,从群落生态学研究进展入手,逐步介绍Hmsc包对于群落生态学假说的解读、Hmsc包开展单物种和多物种分析的技术细节及Hmsc包的实际应用(具体案例)。将通过模型定义、拟合、诊断、评估、预测及结果展示的详细步骤和操作由浅入深讲解使大家掌握此模型方法,实现群落数据分析、物种分布预测、假说验证等工作以解决实际研究和工作中遇到的相关科学问题。它在群落生态学中的应用广泛,可以帮助科学家研究物种在不同环境条件下的分布规律,以及预测物种在未来环境变化下的潜在分布范围。原创 2024-12-20 08:50:18 · 1087 阅读 · 0 评论 -
联合物种分布模型(JSDM)与Hmsc包:群落生态学数据分析与预测技术
本次内容将以Hmsc包为对象,从群落生态学研究进展入手,逐步介绍Hmsc包对于群落生态学假说的解读、Hmsc包开展单物种和多物种分析的技术细节及Hmsc包的实际应用(具体案例)。将通过模型定义、拟合、诊断、评估、预测及结果展示的详细步骤和操作由浅入深讲解使大家掌握此模型方法,实现群落数据分析、物种分布预测、假说验证等工作以解决实际研究和工作中遇到的相关科学问题。又可以同时开展多物种(群落水平)分析,将生态位假说、生物交互作用(种间关联)、物种扩散限制及物种属性和系统发育对物种分布的影响等进行综合考虑。原创 2024-12-19 15:14:38 · 1245 阅读 · 0 评论 -
群落生态学研究进展】Hmsc包开展单物种和多物种分析的技术细节及Hmsc包的实际应用
本次内容将以Hmsc包为对象,从群落生态学研究进展入手,逐步介绍Hmsc包对于群落生态学假说的解读、Hmsc包开展单物种和多物种分析的技术细节及Hmsc包的实际应用(具体案例)。将通过模型定义、拟合、诊断、评估、预测及结果展示的详细步骤和操作由浅入深讲解使大家掌握此模型方法,实现群落数据分析、物种分布预测、假说验证等工作以解决实际研究和工作中遇到的相关科学问题。又可以同时开展多物种(群落水平)分析,将生态位假说、生物交互作用(种间关联)、物种扩散限制及物种属性和系统发育对物种分布的影响等进行综合考虑。原创 2024-12-18 11:01:34 · 1034 阅读 · 0 评论 -
多组学数据如何发表高分SCI论文,以RNA-Seq数据为例
因此,为辅助提高生命科学研究工作者的生物数据可视化与深度挖掘技能,我们举办了本次R语言与生物信息学培训班,本次会议我们精选大量生物数据分析案例,包括利用R语言绘制SCI高质量图片、利用R语言分析生物学数据的案例。(讲解如何从取样、建库、上机测序到数据如何分析,让学员了解目前转录组学哪些内容可以深度挖掘、哪些建库方式对应哪些分析内容、让学员掌握如何根据自己的实验目的选择合适的建库方式和分析手段)R的数据类型及结构 (数值型、逻辑型、字符型、向量、列表、数据框、矩阵)原创 2024-12-03 14:29:43 · 1040 阅读 · 0 评论 -
Python生物信息经典案例实操演示 (fasta序列的合并; 序列长度的批量计算;特定序列的提取;文本处理和格式整理;重测序结果vcf的操作;转录组差异基因结果的筛选;多物种基因家族信息的提取和统计
在海量的组学数据面前,使用别人开发的软件及图 形界面操作往往不能解决工作中的问题,而简单的编程就可能解决问题,因而编程即成为一个生物信 息工作者的必备技能。选择 Python 作为生物信息的入门编程语言,是因为 Python 语言提供了从入门到高手的良好的学习曲线。多物种基因家族信息的提取和统计;经典生物信息学数据操作实例巩固练习 (部分基因序列从数据库中的提取、基因注释信息的添加、基因启动子序列的提取、数据的排序、数据格式的转换、批量数据的操作。7.经典实例脚本编写 (基因名称与序列的存储、操作)原创 2024-12-03 09:53:00 · 987 阅读 · 0 评论 -
生物群落(生态)数据统计分析与绘图▎群落数据准备及探索分析、数据清洗、物种多样性计算
主要特点为聚焦生态学研究领域,从R语言基础操作和作图、数据准备整理,到各种数量分析方法的应用情景分析,实现从数据整理到分析结果展示的完整科学研究数据分析过程,将《R语言基础》、《tidyverse数据清洗》、《多元统计分析》、《随机森林模型》、《回归及混合效应模型》、《结构方程模型》及《统计结果作图》进行了组合(7合1)。包进行数据清洗时,包括行筛选、列筛选、条件筛选(字符操作)等操作,以及长宽数据转换、空值(NA)填充及删除、分组、排序及汇总等,都是我们常见难点。原创 2024-11-01 11:45:51 · 825 阅读 · 0 评论 -
ChatGPT与R语言融合技术在生态环境数据统计分析、绘图(回归和混合效应模型、多元统计分析)
回归和混合效应模型(包含方差分析、协方差分析);每一专题或案例都精心设计,以确保您不仅能够理解各统计模型的基本原理,还能够在GPT的辅助下,有效地开展实际数据分析,轻松应对科研工作中复杂数据局面,提高数据分析能力和效率。4.GPT辅助系统发育相关数据分析案例:模型构建、模型比较、模型诊断等。1) 基础绘图类型:散点图、箱线图、频率图、提琴图、峰峦图、相关图等。2.GPT辅助空间自相关数据分析案例:模型构建、模型比较、模型诊断等。3.GPT辅助时间自相关数据分析案例:模型构建、模型比较、模型诊断等。原创 2024-10-01 12:25:23 · 811 阅读 · 4 评论 -
汇智生物---农业与植物基因组分析专家
DNA亲和纯化测序技术通过体外表达转录因子鉴定转录因子结合位点,不受抗体和物种限制,且具有高通量的优势。DAP-Seq将蛋白质体外表达技术与高通量测序技术相结合,不需要针对每个转录因子制备特异性抗体,所以具有快速、高通量节约时间成本等优势,比Chip-seq更易于扩展;且可广泛用于大部分物种。1、DAP-seq可高通量检测转录因子或DNA结合蛋白在基因组上的结合位点;2、可用于模式物种和非模式物种的研究,无需特异性抗体;2.博导团队免费解读实验结果。3、多年、多物种的实验经验;1.博导团队免费指导设计。原创 2024-09-23 21:40:01 · 315 阅读 · 0 评论 -
表观组学分析丨杰青博导团队为您提供完整的基因功能分析解决方案
文库构建蛋白表达亲和纯化测序分析。原创 2024-09-22 19:14:05 · 218 阅读 · 0 评论 -
基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析------生物多样性保护、气候变化影响评估和入侵物种管理
BIOMOD2模型的运行涉及多个步骤,包括物种分布文件的建立、环境变量的选择、模型参数及其设置、模型算法介绍及主要参数等。1、理解物种分布模型的基本原理:理解物种分布模型(SDMs)的理论基础,包括模型的种类、用途以及在生态研究和环境管理中的应用。2、掌握BIOMOD2软件包的使用:在R环境中有效地使用BIOMOD2软件包,包括数据准备、模型构建、模型评估和结果解释。3、提高数据分析和处理能力:获取、处理和分析环境与物种数据的能力,包括数据清洗、变量选择和模型优化。原创 2024-07-02 09:01:07 · 883 阅读 · 0 评论 -
【BIOMOD2模型】未来气候变化下的情景预测、物种适生区的变化分析以及MESS分析过程的实现
BIOMOD2模型的运行涉及多个步骤,包括物种分布文件的建立、环境变量的选择、模型参数及其设置、模型算法介绍及主要参数等。1、理解物种分布模型的基本原理:理解物种分布模型(SDMs)的理论基础,包括模型的种类、用途以及在生态研究和环境管理中的应用。2、掌握BIOMOD2软件包的使用:在R环境中有效地使用BIOMOD2软件包,包括数据准备、模型构建、模型评估和结果解释。3、提高数据分析和处理能力:获取、处理和分析环境与物种数据的能力,包括数据清洗、变量选择和模型优化。原创 2024-06-24 14:38:43 · 999 阅读 · 0 评论 -
刷屏一天GPT-4o,发现GPT4用的都还不熟练?戳这儿
3) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)案例10.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图。5) 主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN。4) 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优。原创 2024-05-16 15:04:14 · 1276 阅读 · 2 评论 -
lavaan空间自相关数据分析
训练内容包括R语言入门、结构方程模型原理简介、lavaan包简介及应用案例、潜变量分析、复合变量分析、非线性/非正态/缺失数据、分类变量、分组数据、嵌套/分层/多水平数据、重复测量和时间数据、空间数据及非递归模型。结构方程模型(Sructural Equation Modeling,SEM)是分析系统内变量间的相互关系的利器,可通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、医学、社会、经济等众多领域应用十分广泛的统计方法。原创 2024-05-05 21:54:15 · 364 阅读 · 0 评论 -
自然科学领域基于ChatGPT大模型的科研绘图
3) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)案例9.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图。主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN。特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优。原创 2024-05-04 18:56:07 · 1150 阅读 · 0 评论 -
lavaan处理非线性/非正态/缺失数据
训练内容包括R语言入门、结构方程模型原理简介、lavaan包简介及应用案例、潜变量分析、复合变量分析、非线性/非正态/缺失数据、分类变量、分组数据、嵌套/分层/多水平数据、重复测量和时间数据、空间数据及非递归模型。)是分析系统内变量间的相互关系的利器,可通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、医学、社会、经济等众多领域应用十分广泛的统计方法。2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等。原创 2024-05-01 18:12:18 · 272 阅读 · 0 评论 -
如何用ChatGPT复现nature正刊论文,自然科学领域人员必看
面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、机器/深度学习、大尺度模拟、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等原创 2024-04-25 14:22:10 · 1742 阅读 · 0 评论 -
如何应用ChatGPT撰写、修改论文及工作报告,提供写作能力及优化工作??
如何使用GPT4快速制作流程图和思维导图原创 2023-11-23 22:04:46 · 2505 阅读 · 2 评论 -
R语言生物群落(生态)数据统计分析与绘图
聚焦生态学研究领域,从R语言基础操作和作图、数据准备整理,到各种数量分析方法的应用情景分析,实现从数据整理到分析结果展示的完整科学研究数据分析过程,将《R语言基础》、《tidyverse数据清洗》、《多元统计分析》、《随机森林模型》、《回归及混合效应模型》、《结构方程模型》及《统计结果作图》进行了组合(7合1)本课程以生物群落数据分析中的最常用的统计方法回归和混合效应模型、多元统计分析技术及结构方程等数量分析方法为主线,通过多个来自经典研究中的实例,详细讲述各方法的R语言实现途径。原创 2023-11-08 16:56:14 · 724 阅读 · 1 评论 -
如何使用WOFOST和PCSE这两个农业生产模型进行作物生长模拟??
WOFOST(WorldFoodStudies)和PCSE(PythonCropSimulationEnvironment)是两个用于农业生产模拟的模型:WOFOST是一个经过多年开发和验证的模型,被广泛用于全球的农业生产模拟和农业政策分析;作物本身的生长发育是一个非常复杂的过程,因此在利用作物模型模拟作物生长过程中涉及的输入参数较多,主要包括气象、作物、土壤、田间管理参数等,在模型参数敏感性分析的基础上,结合实验区实际情况,对敏感性较高的参数进行定标,参数标定部分可参阅文献和网站等资料。原创 2023-09-20 15:29:23 · 853 阅读 · 0 评论 -
结构方程模型(SEM)在生态学领域中的实践
基于lavaan的SEM潜变量分析、基于lavaan的SEM复合变量分析、局域估计SEM -piecewiseSEM及生态学领域、贝叶斯SEM在生态学领域应用原创 2023-04-10 22:07:08 · 1471 阅读 · 0 评论 -
如何提高提高数据分析能力??R语言生物群落(生态)数据统计分析与绘图
聚焦生态学研究领域,从R语言基础操作和作图、数据准备整理,到各种数量分析方法的应用情景分析,实现从数据整理到分析结果展示的完整科学研究数据分析过程,将《R语言基础》、《tidyverse数据清洗》、《多元统计分析》、《随机森林模型》、《回归及混合效应模型》、《结构方程模型》及《统计结果作图》进行了组合原创 2023-01-31 11:01:16 · 694 阅读 · 0 评论 -
R语言生态环境多元数据分析
多元统计分析是非常重要和实用的多元数据分析方法和统计工具。其中分类(classification)/分组(grouping)和梯度(gradient)/排序(ordination)分析是多元统计分析的核心内容原创 2023-01-30 15:27:14 · 503 阅读 · 0 评论 -
MaxEnt模型融合技术的物种分布模拟、参数优化方法、结果分析制图与论文写作
融合R语言的MaxEnt模型的优势有什么?原创 2022-11-18 10:29:13 · 1617 阅读 · 0 评论 -
R语言在生态环境领域中的应用
利用vegan、ade4、adespatial、stats、cluster、dendextend等多个程序包分析数据的分布、相关性、回归、聚类、排序、空间结构和群落多样性等内容,解读其结果及生态学意义原创 2022-08-17 16:19:56 · 585 阅读 · 0 评论 -
CENTURY模型可以模拟土壤呼吸吗?CENTURY模型实践技术应用与案例分析
CENTURY模型主要用于模拟不同土壤-植被系统间C、N、P和S的长期动态。根据土壤有机质的分解速率,CENTURY模型将土壤总有机碳(TOC)分成了三个碳库,即活性、慢性和惰性有机碳库。原创 2022-07-20 16:32:03 · 522 阅读 · 0 评论 -
如何选择模型,嵌套结构和重复如何界定?
计数数据各种情况及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型原创 2022-07-05 14:50:35 · 400 阅读 · 0 评论 -
MAXENT模型的生物多样性生境模拟与保护优先区甄选、自然保护区布局优化评估及论文写作技巧
最大熵模型(Maxent模型)利用物种的分布与环境数据,采用特定算法评估物种的生态位,并投射到景观中,可以直观的呈现物种出现的概率、生境适宜度或物种丰富度等,是目前应用最广泛、预测效果最好的物种分布模型。采用基于Maxent模型的生物多样性热点模拟与GAP分析,将为我国的自然保护区优化、自然保护地体系构建和保护地社区精准脱贫致富等提供重要的决策依据...原创 2022-06-16 17:22:20 · 917 阅读 · 1 评论 -
BIOMOD2物种分布模拟模型
BIOMOD2提供运行多达10余种物种分布模拟模型,模拟特定物种与其环境之间的关系,试图利用环境变量来模拟特定物种的生态位原创 2022-06-16 10:48:34 · 1341 阅读 · 2 评论