
农业
文章平均质量分 80
xiao5kou4chang6kai4
xiao5kou4chang6kai4 的博客
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于R语言贝叶斯进阶:INLA下的贝叶斯回归、生存分析、随机游走、广义可加模型、极端数据的贝叶斯分析等
贝叶斯统计学是一门基本思想与传统基于频率思想的统计学完全不同的统计学方法;它以其灵活性和先进性在现代的统计学中占据着重要的地位。贝叶斯回归方法作为传统回归技术在贝叶斯统计学中的拓展,在各个专业领域中都有着广泛的应用。贝叶斯回归结合了回归和贝叶斯思想,其计算方法和技术以及模型结果的解释都较为复杂。3.面板(测量)数据的多层模型。3.计数数据的广义可加模型。2.极值统计学的贝叶斯估计。1.线性回归的贝叶斯推断。3.贝叶斯下的模型选择。3.偏斜数据的伽马回归。4.计数数据的多层模型。2.嵌套效应多层模型。原创 2025-08-14 17:54:32 · 121 阅读 · 0 评论 -
如何利用地表温度遥感数据和气象资料计算农田地表水热通量
由于热红外遥感对地表干湿变化、以及农业干旱响应快速,利用地表温度遥感数据可以快速准确的反演地表水热通量。利用机器学习方法,综合地面观测资料、遥感数据、大气数据进行区域蒸发比参数的训练与建模,作为区域蒸发比参数的先验值。利用MATLAB软件程序进行模型参数的调优,包括蒸发比、湍流传输系数、观测与模型误差、迭代次数等。包括风速、气温、大气压、相对湿度、太阳辐射、大气下行辐射,以及资料发生缺失如何填充等。地表温度、反照率:利用四分量辐射仪实现对地表温度、地表反照率的计算。感热通量、潜热通量、蒸发比的计算与处理。原创 2025-08-02 14:25:37 · 321 阅读 · 0 评论 -
甲烷(CH4)、氧化亚氮(N2O)和二氧化碳(CO2)的排放过程以及模拟
农业是甲烷(CH4)、氧化亚氮(N2O)和二氧化碳(CO2)等温室气体的主要排放源,占全产业排放的13.5%。农田温室气体又以施肥产生的N2O和稻田生产产生的CH4为主,如何对农田温室气体进行有效模拟,不确定性较大。本内容将从生命周期评价法(LCA)、经验模型和过程模型三个维度讲解农田温室气体排放的模拟,详细介绍甲烷(CH4)、氧化亚氮(N2O)和二氧化碳(CO2)的排放过程以及模拟技术,掌握农田温室气体排放的模拟技术。1)氧化亚氮(N2O)排放的过程(氮素的硝化作用与反硝化作用)原创 2025-08-02 14:07:44 · 303 阅读 · 0 评论 -
R语言地统计与空间自相关、空间插值方法
R语言在数据分析、挖掘和可视化中发挥着重要的作用,其中在空间分析方面扮演着重要角色,与空间相关的包的数量也达到130多个。在本次培训中,我们将结合一些经典的例子培训R语言在空间数据处理、管理以及可视化的操作,8)plot、image、image.plot、tmap、ggmap、ggplot2: 空间专题图。3)rgdal: 封装 GDAL (一个开源地理数据抽象库,提供非常丰富的地理数据读写驱动))1)R语言机器学习模型的构建(数据标准化、数据分割、超参数优化)原创 2025-08-01 17:42:21 · 512 阅读 · 0 评论 -
DSSAT作物模型建模方法及实践技术应用
随着数字农业和智慧农业的发展,基于过程的作物生长模型(Process-based Crop Growth Simulation Model)在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农业碳中和、农田固碳减排等领域扮演着越来越重要的作用。了解和熟悉DSSAT模型的关键算法和软件的操作是学习DSSAT模型的基础。Python是一门应用场景广泛、简单易学的程序语言,在DSSAT模型的气候、土壤、管理措施等数据准备,自动化模拟和结果分析上都发挥着重要的作用。原创 2025-07-30 16:38:01 · 404 阅读 · 0 评论 -
Python语言快速批量运行DSSAT模型及交叉融合
Python是一门应用场景广泛、简单易学的程序语言,在DSSAT模型的气候、土壤、管理措施等数据准备,自动化模拟和结果分析上都发挥着重要的作用。1 使用Python对农田管理措施(播期、密度、施肥、灌溉、有机肥、秸秆还田等)进行设置。2 使用Python计算模拟结果的MSE、RMSE、MAE、d-value、EF值。3 使用Python对模拟结果进行可视化(模拟结果的动态图和1:1图等)专题五 Python准备DSSAT参数文件及批量模拟文件。1 使用Python读取DSSAT文件的模拟结果。原创 2025-07-30 11:35:14 · 734 阅读 · 0 评论 -
DSSAT模型 ▎精细农业、水肥管理、气候变化、粮食安全、土碳循环、环境影响、农业可持续性、农业生态等领域应用
随着基于过程的作物生长模型(Process-based Crop Growth Simulation Model)的发展,R语言在作物生长模型和数据分析、挖掘和可视化中发挥着越来越重要的作用。现有版本V4.7能模拟27种主要农作物的生长发育和产量形成过程,被广泛应用于精细农业、水肥管理、气候变化、粮食安全、土碳循环、环境影响、农业可持续性、农业生态等诸多与农业生产和科研有关的领域。R语言在DSSAT模型的气候、土壤、管理措施等数据准备,自动化模拟和结果分析上都发挥着重要的作用。原创 2025-07-29 17:24:41 · 754 阅读 · 0 评论 -
岩矿、土壤、植被等地物的光谱特征和图像特征,多光谱数据预处理、图像分类、定量评估、机器学习
针对多光谱数据处理,除了ENVI自带和拓展的功能之外,课程提供一套基于Python开发方法,结合目前主流的机器学习和深度学习方法,介绍多光谱遥感数据的整理、图像分类、多时间序列处理、多传感器协同等方法,基于python实现多光谱数据处理和分析过程。与昂贵、不易获取的高光谱、高空间分辨率卫星数据相比,中等分辨率的多光谱卫星数据可以免费下载获取,例如:landsat数据、哨兵-2号数据、Aster数据、Modis数据等,这些海量的长时间对地观测数据,蕴藏着丰富的信息。多光谱遥感基本概念;多光谱数据读取和显示;原创 2025-07-29 17:09:11 · 941 阅读 · 0 评论 -
MATLAB近红外光谱分析技术及实践技术
核函数的作用是什么?1、主成分分析(PCA)、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?2、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?3、MATLAB文件读写(mat、txt、xls、csv、jpg、wav、avi等格式)4、案例演示:一维卷积神经网络的MATLAB实现(基于卷积神经网络的近红外光谱建模)3、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计、样本不平衡问题等)原创 2025-07-25 17:17:45 · 453 阅读 · 0 评论 -
基于AI大语言模型的科研绘图、时空大数据分析、优化算法、统计分析
以ChatGPT-4o代表AI大语言模型引领了新一波人工智能浪潮,也在自然科学各个过程中提升生产力,本课程通过生物、地球、农业、气象、生态、环境、GIS科学领域中的大量案例,结合数据、文本、图片、代码、语音、视频等不同形式的数据、模式和内容,讲解自然科研的全流程,通过大模型辅助编写Python和R语言代码以及大模型API二次开发等技术对案例进行实现,带领大家快速进入科研新范式。5)主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN。原创 2025-07-25 14:56:19 · 769 阅读 · 0 评论 -
R语言结构方程模型分析(潜变量分析;组成变量分析;非线性关系处理、非正态数据、分组数据、嵌套数据分析与处理)
结构方程模型(Sructural Equation Model)是一种建立、估计和检验因果关系模型的方法,它是基于变量的协方差矩阵来分析变量之间关系的一种统计方法,它可以替代多重回归、因子分析、协方差分析等方法,利用图形化模型方式清晰分析研究系统中变量间的相互关系,是近年来地学、生态、进化、环境、医学、社会、经济领域应用十分广泛的统计方法,具有强大的数据分析功能和广泛的适用性。2)结构方模型估计方法:局域估计和全局估计的基本工作原理、主要区别及应用情景分析。(1)潜变量的定义、优势及应用背景分析。原创 2025-07-24 16:50:03 · 1315 阅读 · 0 评论 -
MATLAB 2024b深度学习数据清洗、模型设计、训练优化到模型压缩
4、Transformer模型工作原理(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)YOLO模型的工作原理(从传统目标检测到基于深度学习的目标检测、从“两步法”的R-CNN到“一步法”的YOLO、YOLO模型的演化历史)7、ViT模型(提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化。原创 2025-07-24 11:30:32 · 429 阅读 · 0 评论 -
如何使用python网络爬虫批量获取公共资源数据
Python网络爬虫是快速批量获取网络数据的重要手段,它按照发送请求、获得页面、解析页面、下载内容、储存内容等流程,根据网页的链接地址自动获取网页内容,其特点是快速批量、自动化运行。由于网页内容、结果和反爬虫机制的不断更新,拥有一段爬虫程序并不是一劳永逸,而需要针对不同网页及时更新,而掌握爬虫的关键技术是在各种复杂网页中成功爬取数据和甚至成为爬虫工程师的基础。4)案例:使用五种不同解析技术爬取经济、天气、土壤、品种大数据。4)案例:使用json解析爬取数据类网站。1)抓取的数据形式:文本、图片、链接。原创 2025-07-24 09:45:46 · 705 阅读 · 0 评论 -
WOFOST和PCSE模型的农业生产模拟和农业政策分析
作物本身的生长发育是一个非常复杂的过程,因此在利用作物模型模拟作物生长过程中涉及的输入参数较多,主要包括气象、作物、土壤、田间管理参数等,在模型参数敏感性分析的基础上,结合实验区实际情况,对敏感性较高的参数进行定标,参数标定部分可参阅文献和网站等资料。处理方法:数据需要与模型的时间步长匹配,并与气象和土壤数据进行时间上的协调。参数是包括作物的物候学参数、同化和呼吸特征参数以及同化物分配到植物器官的参数等,这些参数保存在安装目录...\WCC\CROPD,在模型控制中心可以通过选择该作物调用该文件进行模拟。原创 2025-07-18 16:18:58 · 709 阅读 · 0 评论 -
现代R语言【Tidyverse、Tidymodel】的机器学习方法
机器学习已经成为继理论、实验和数值计算之后的科研“第四范式”,是发现新规律,总结和分析实验结果的利器。机器学习涉及的理论和方法繁多,编程相当复杂,一直是阻碍机器学习大范围应用的主要困难之一,由此诞生了Python,R,SAS,STAT等语言辅助机器学习算法的实现。1.Tidymodel,Tidyverse语法精讲。4.Lasso回归与最小角度回归。4.Logistic回归。2.机器学习的基本概念。3.GBM与随机GBM。3.机器学习建模过程。3.可解释的机器学习。原创 2025-07-18 15:50:04 · 249 阅读 · 0 评论 -
piecewiseSEM非线性关系数据分析、数据分组(multigroup)分析
在R语言结构方程程序包中,piecewiseSEM语法简洁,将结构方程模型拆分为多个组分(component)模型进行拟合和评估,可与混合效应模型实现无缝对接,在应对研究系统中复杂数据结构和类型,如多层数据嵌套和非正态分布类型变量(二项分布、泊松分布),有明显的优势。训练内容包括R语言入门、结构方程模型原理简介、piecewise包简介及应用案例、非正态分布变量分析、嵌套/分层/多水平数据分析、重复测量和时间数据分析、空间自相关数据分析、系统发育数据分析、复合变量分析、分类变量、非线性数据及数据分组分析。原创 2025-07-18 15:43:30 · 745 阅读 · 0 评论 -
AI+PLUS+InVest ▏从土地利用预测到生态服务空间异质性归因的核心技术
本课程聚焦的 PLUS 模型,内嵌 Markov 链与多类型随机斑块种子 CA 模型,结合 AI 数据处理与参数优化技术,可精准模拟不同政策情景下土地利用演变的斑块级细节,量化其对产水、碳储量、生境质量等生态服务的潜在影响。面对未来土地情景演替加剧的挑战,融合 AI 的多情景模拟技术成为刚需:通过 InVEST 模型量化生态服务时空异质性,借助 ArcGIS 实现空间数据处理与分析,结合 AI 辅助情景设计与结果归因,形成 “数据预处理 — 模型模拟 — 决策支持” 的全链条解决方案。原创 2025-07-18 14:13:06 · 945 阅读 · 0 评论 -
Python+GEE ▏平台搭建、影像数据分析、10大经典应用案例、本地与云端数据管理
案例重点介绍如何计算干季像元绿度的单调趋势指标,如何基于趋势指标推断农业实践变化的性质和强度,以及如何探索植被绿度变化与生态系统类型(由年平均降水量决定)之间的关系。学员将学习如何处理Landsat影像,进行云掩膜处理和植被指数计算,应用二阶调和回归提取NIR、SWIR1、SWIR2和GCVI等波段的时间序列特征系数。学员还将掌握生态环境质量等级划分方法,学习如何制作生态环境质量分布图和变化图,分析生态环境质量的时空变化特征及其与人类活动的关系,为区域可持续发展提供科学依据。原创 2025-07-17 17:28:06 · 1389 阅读 · 0 评论 -
【遥感数据与作物模型同化】遥感数据、PROSAIL模型、DSSAT模型、参数敏感性分析、数据同化算法、模型耦合、精度验证等
基于过程的作物生长模拟模型DSSAT是现代农业系统研究的有力工具,可以定量描述作物生长发育和产量形成过程及其与气候因子、土壤环境、品种类型和技术措施之间的关系,为不同条件下作物生长发育及产量预测、栽培管理、环境评价以及未来气候变化评估等提供了定量化工具。主要涉及遥感数据与作物模型同化建模中的遥感数据、PROSAIL模型、DSSAT模型、参数敏感性分析、数据同化算法、模型耦合、精度验证等主要环节。遥感平台(如无人机)与传感器、国内外主要陆地卫星(如Landsat、SPOT、HJ、GF)原创 2025-07-14 16:38:10 · 866 阅读 · 0 评论 -
基于机器学习算法从遥感图像提取植被参数代码实现
传统的地面实测方法能够得到比较准确的植被参数(如叶面积指数、覆盖度、生物量、叶绿素、干物质、叶片含水量、FPAR等),但其获取信息有限,难以满足大范围提取植被参数的需求,尤其在异质地表区域。遥感技术的发展为植被生长状态及动态监测提供了重要的技术手段,与传统地面实测方法不同,遥感把传统的“点”测量获取的有限代表性信息扩展为更加符合客观世界的“面”信息(即区域信息),且不会对生态系统造成破坏,能够长期、动态、连续地估算植被参数,在区域或全球尺度植被参数估算中具有不可替代的优势。原创 2025-07-14 16:12:52 · 877 阅读 · 0 评论 -
【Python-GEE】如何利用Landsat时间序列影像通过调和回归方法提取农作物特征并进行分类
1)GEE平台架构与技术特点2)与其他云计算平台(Microsoft Planetary Computer、PIE-Engine等)比较3)典型应用场景与成功案例简介4)GEE数据目录与存储架构。原创 2025-07-08 15:33:43 · 1566 阅读 · 0 评论 -
Meta分析效应量的选取与计算、异质性检验、数据结构、固定效应和随机效应模型、数据信息的获取与偏倚分析、数据填补等
4、偏倚结果的矫正——“Trim and Fill”4、分组分析与Meta回归(单变量、双变量)6、模型比较(Model Building)3、非结构化数据、分组数据、连续数据。2、合并效应值的计算及异质性检验。1、效应值的选取、计算与转换。5、累积/递减Meta分析。2、文献资料的搜集与初筛。3、参数模型与非参数模型。3、加权直方图及高斯拟合。1、效应值的选取与计算。1、Meta分析简介。1、Meta分析选题。2、合并效应值的计算。原创 2025-07-04 20:34:18 · 240 阅读 · 0 评论 -
Hydrus环境,生态,农业领域应用,土壤污染物运移范围预测方法等
Hydrus是基于Windows系统界面开发的环境土壤物理模拟软件,是用于模拟一维和多维变饱和多孔介质的水分运动、溶质(污染物等)运移、根系吸水和溶质吸收、以及热量传导等方面的强有力工具。Hydrus还包括一个参数优化算法,用于各种土壤的水力学、溶质运移和热传递参数的反演估计。该模型具有灵活方便的图形操作界面,深受各国学者推崇,广泛应用于环境、水文地质、农业、水利等领域。将模型参数拓展到二维和三维,基于Hydrus-2D/3D还可以模拟污染物在水平方向和任意复杂地形条件下的迁移问题。原创 2025-07-04 17:19:22 · 538 阅读 · 0 评论 -
基于InVEST模型生境质量评估、基于SoLVES社会价值评估、耦合度分析
SolVES模型(Social Values for Ecosystem Services)全称为生态系统服务社会价值模型,是由美国地质勘探局和美国科罗拉多州立大学联合开发的一款地理信息系统应用程序,开发该模型的目的主要是对生态系统服务功能中的社会价值进行空间分析和量化评估,评价结果不以货币的形式进行展示总价值,而是以价值指数来表示社会价值的高低。如何结合环境变量数据,启动MaxEnt最大熵模型预测社会价值点的空间分布,实现社会价值的制图,如何对模型结果进行空间分析和统计分析;如何将模型结果进行耦合分析。原创 2025-07-03 16:21:29 · 778 阅读 · 0 评论 -
SWAP模型春小麦生长模拟与灌溉需水分析
为了让更多的科研人员和农业工作者能够深入理解SWAP模型的原理,有效地运用这一工具,将详细进行SWAP模型的各个组成部分,包括气象、土壤、作物和管理措施等数据的准备和输入。通过模型的实践操作和结果分析,让参与者能够不仅理解模型背后的科学原理,同时掌握如何在实际工作中应用模型来解决问题。为了让更多的科研人员和农业工作者能够深入理解SWAP模型的原理,有效地运用这一工具,将详细进行SWAP模型的各个组成部分,包括气象、土壤、作物和管理措施等数据的准备和输入。是一种描述作物生长过程的一种机理性作物生长模型。原创 2025-06-20 13:48:04 · 293 阅读 · 0 评论 -
AquaCrop模型源代码分析、模型优化与敏感性分析、未来气候变化影响分析
为了让更多的科研人员和农业工作者能够深入理解AquaCrop模型的原理,有效地运用这一工具,将详细讲解AquaCrop模型的各个组成部分,包括气象、土壤、作物和管理措施等数据的准备和输入。通过模型的实践操作和结果分析,让参与者能够不仅理解模型背后的科学原理,同时掌握如何在实际工作中应用模型来解决问题。模型的核心优势在于其独特的水分管理能力,能够精确模拟作物生长过程中水分的需求与消耗,帮助农业工作者制定更为科学和高效的灌溉策略。3.对于(水环境、水文及农业)模型研究者在大语言模型上的发展方向建议。原创 2025-06-19 16:27:48 · 656 阅读 · 0 评论 -
环境监测、精准农业、地质勘探等领域高光谱遥感实战
程序05:Jupyter Lab插件开发(自定义高光谱工具)程序03:光谱曲线动态可视化(Matplotlib交互式)程序04:Anaconda多环境配置(CPU/GPU版本)程序17:三维点云辅助校正(LiDAR数据)程序24:对抗生成增强(CycleGAN)程序27:辐射一致性检验(相对辐射归一化)程序37:NDVI时间序列滤波(SG滤波)程序11:辐射定标验证(辐射标准板校正)程序12:几何精度验证(GCP残差分析)程序18:超分辨率重建(SRCNN应用)程序23:空间-光谱联合增强(3D滤波)原创 2025-06-18 15:44:53 · 1301 阅读 · 0 评论 -
SWAT模型无资料地区建模、不确定分析及气候、土地利用变化对水资源与面源污染影响分析
3.3 pre-defined子流域及河网完整制备及注意事项。5.4 基于ArcGIS及python的CMIP6数据处理。6.3 土地利用变化对SWAT模型结果的影响。7.2 与SWAT模型结合的常用模型文献分析。1.1 SWAT模型应用文献解析及热点剖析。3.2 ArcGIS水文分析及SWAT应用。2.5 无资料地区SWAT模型率定验证。7.1 SWAT模型代码修改及应用。2.1 无资料地区DEM数据制备。2.2 无资料地区土地利用制备。2.3 无资料地区土壤数据制备。2.4 无资料地区气象数据制备。原创 2025-06-17 17:28:09 · 271 阅读 · 0 评论 -
基于 ArcGIS、ENVI 及 CLUE 模型的土地利用情景模拟与地理空间分析技术探究
基于遥感影像解译,可获取历史或当前任何一个区域的土地利用/土地覆盖数据,用于评估区域的生态环境变化、评价重大生态工程建设成效等。借助CLUE模型,实现对未来土地利用/土地覆盖的时空预测,并进一步评估与权衡其带来的生态效益变化,可为科学研究和政策制定提供重要的决策依据。1、ArcGIS数据形式与数据格式、数据格式之间的相互转换;10、专题图版面设计、制图数据操作、地图标注、图幅整饰等。2、新地图要素的创建、数据加载、数据层操作与保存等;7、各种格式空间数据的剪裁、拼接及提取;8、矢量数据、删格数据的符号化;原创 2025-06-10 17:13:07 · 213 阅读 · 0 评论 -
生态系统服务(InVEST模型)供给与需求、价值核算技术及人类活动、重大工程项目、自然保护区、碳中和等
生态保护红线政策、保护优先区甄选、自然保护区调整及其他相关项目,均需要在对区域的生态系统服务进行评估的基础上,进一步分析各生态系统服务指标的空间分布与数量特征,揭示各指标的权衡与协同关系;1) 采用InVEST模型,掌握产水(包括水源涵养)、碳存储(包括固碳)、土壤保持、水质(氮磷)、生境质量和热岛缓解等生态系统服务供给、需求与价值的评估方法,开展人类活动影响、重大工程实施的生态成效评估;2) 原理深入浅出的讲解,包括参数的设置、数据的获取和处理,模型结果的深度解析;模型的拓展,价值化、供需耦合等方面。原创 2025-06-09 15:23:45 · 1171 阅读 · 0 评论 -
生命周期评价理论、模型构建与实践操作深度解析
生命周期分析是一种分析工具,它可帮助人们进行有关如何改变产品或如何设计替代产品方面的环境决策,即由更清洁的工艺制造更清洁的产品。例如,生命周期分析的结果表明,某种产品能耗低,寿命长,不含有毒化学物质,其包装及残余物体积小,从而占用较少的填埋场空间,这就成为我们进行产品选择的依据。生命周期分析 (Life Cycle Analysis, LCA) 是评价一个产品系统生命周期整个阶段——从原材料的提取和加工,到产品生产、包装、市场营销、使用、再使用和产品维护,直至再循环和最终废物处置——的环境影响的工具。原创 2025-06-03 15:51:36 · 616 阅读 · 0 评论 -
Python长时序植被遥感动态分析、物候提取、时空变异归因及RSEI生态评估
从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT 、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势。GDAL库的介绍、安装与应用示例(多种栅格数据格式、数据裁剪、重投影以及统计分析等)湿度(WET)、绿度(NDVI)、热度(LST)和干度(NDBSI)等生态指标计算。原创 2025-05-28 16:46:53 · 484 阅读 · 0 评论 -
Python深度学习植被参数反演AI辅助代码生成—模型构建—实战案例
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。AI 凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参数(如叶面积指数、叶绿素含量、植被覆盖度等)反演的精度与鲁棒性。5、AI的提问框架【提示词、指令】、AI的应用妙招【指令优化】5、植被参数SVR遥感反演模型【调整代码、构建反演模型】原创 2025-05-28 16:32:15 · 370 阅读 · 0 评论 -
AI智慧高光谱遥感实战:作物胁迫早期预警、精准施肥量计算、无人机巡田系统
内容以DeepSeek平台为核心,深度融合Python生态中的科学计算库(如GDAL、scikit-learn、TensorFlow),不仅教授传统的高光谱辐射校正、几何精校正、大气校正等预处理技术,更重点突破深度学习在高光谱领域的应用瓶颈。无论是遥感专业的研究生,还是希望转型AI的地信工程师,都能通过本内容构建完整的高光谱技术体系。在农业(作物监测/精准施肥)、环保(水质/污染溯源)、地质(矿物勘探/岩性识别)、城市(违建检测/热岛分析)、应急(灾害评估/救援规划)等领域落地高光谱AI解决方案。原创 2025-05-27 16:55:41 · 928 阅读 · 0 评论 -
如何将大型语言模型等前沿AI工具融入科研工作流程,包括AI技术在时空数据处理、多源数据融合、预测模型构建等
面向地球科学领域研究人员,聚焦Python编程与前沿AI技术的融合应用,解决地球科学研究中的复杂问题。在气候变化与极端天气事件频发的背景下,本内容将传统分析方法与现代AI技术结合,助力研究人员提升数据处理效率与科学发现能力。课程从Python基础快速过渡到Xarray、Dask等专业工具,深入探讨CMIP6气候模拟与WRF区域气象模式的高效处理。核心内容包括AI技术在时空数据处理、多源数据融合、预测模型构建等方面的应用,涵盖时间序列分析、空间统计建模、遥感影像解译与生态系统模拟等关键领域。原创 2025-05-21 17:26:51 · 1217 阅读 · 0 评论 -
基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析
加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归。6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归。3.广义地理加权回归:链接函数,泊松回归与二项式回归。2.地理加权回归:基本方法与稳健方法,异常值的检验。1.多尺度地理加权回归:可变带宽的选择。专题一:地理加权回归下的描述性统计学。4.空间权重矩阵与半参数地理加权回归。5.分位数回归与地理加权分位数回归。7.时空地理加权回归:GTWR。6.判别分析与地理加权判别分析。8.QGIS中的地理加权回归。专题二:地理加权主成分分析。原创 2025-05-20 16:41:34 · 266 阅读 · 0 评论 -
贝叶斯网络结构,参数学习以及因果推断等
在实践中,变量间的因果关系研究往往求助于昂贵的实验,但所得结果又经常与天然环境中的实际因果联系相差甚远。统计学方法是研究天然环境中变量间关系的好方法,但常见的统计学方法往往回答的是变量间的相关关系。自贝叶斯网络模型在上个世纪80年代被正式提出以来,其已经被运用于生态、环境、医学、社会学等各方面的研究,取得了丰硕的成果;本内容以开源的R语言为平台,通过理论和实践相结合的方法,系统介绍了贝叶斯网络结构学习,参数学习以及因果推断等全过程,使大家对贝叶斯网络有较全面的了解,并能够用于科研和工作实践中。原创 2025-05-20 15:46:09 · 245 阅读 · 0 评论 -
R-Meta多手段全流程分析与Meta高级绘图、多层次分层嵌套模型构建与Meta回归诊断、贝叶斯网络、MCMC参数优化及不确定性分析、Meta数据缺失值处理的六种方法与结果可靠性分析
Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,现已广泛应用于农林生态,资源环境等方面,成为Science、Nature论文的重要分析方法。以ChatGPT为代表AI大语言模型带来了新一波人工智能浪潮,可以快速提升Meta分析的理解和应用效率。原创 2025-05-14 14:52:28 · 863 阅读 · 0 评论 -
逆天了!掌握 AI+R-Meta 分析核心技术,论文发表不再是梦!
Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,现已广泛应用于农林生态,资源环境等方面,成为Science、Nature论文的重要分析方法。以ChatGPT为代表AI大语言模型带来了新一波人工智能浪潮,可以快速提升Meta分析的理解和应用效率。原创 2025-05-09 14:13:20 · 847 阅读 · 0 评论 -
CMIP6空间降尺度、动力降尺度、气候变化、极端事件分析
CMIP6(Coupled Model Intercomparison Project Phase 6)降尺度技术是指利用全球气候模式(GCMs)模拟的较粗分辨率数据,通过一系列统计、数学和物理方法,将其降尺度到更细的空间尺度。常用的降尺度技术包括统计降尺度方法、动力降尺度方法等,其中统计降尺度方法是通过统计关系来估算细尺度的气候变量,而动力降尺度方法则是利用物理过程模型对粗尺度数据进行调整来得到更为精细的结果。●CORDEX、AMIP、PMIP、ScenarioMIP、GeoMIP等重要比较计划。原创 2025-05-07 17:32:31 · 1411 阅读 · 0 评论