扩展欧几里得算法是欧几里得算法(又叫辗转相除法)的扩展。通常谈到最大公因子时, 我们都会提到一个非常基本的事实: 给予二整数 a 与 b, 必存在有整数 x 与 y 使得ax + by = gcd(a,b)。因此,有两个数a,b,对它们进行辗转相除法,可得它们的最大公约数;然后,收集辗转相除法中产生的式子,倒回去,可以得到ax+by=gcd(a,b)的一组整数特解。
以下是扩展欧几里得算法的python实现:
1.递归
#扩展欧几里得算法
def ext_gcd(a, b):
if b == 0:
return 1, 0, a
else:
x, y, gcd = ext_gcd(b, a % b) #递归直至余数等于0(需多递归一层用来判断)
x, y = y