Web Scraper 10分钟爬取微博评论实践(进阶教程)

文章介绍了如何使用WebScraper这款工具,无需编写大量Python代码,快速抓取微博评论,通过创建sitemap和设置滚动功能实现自动化爬取,步骤包括安装、账号绑定、设置爬取参数和导出数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用完这个工具,你会发现,根本不用像python一样模拟登陆,敲一大堆代码,平均获取一页数据在1.5秒左右,简单轻松上手。

第一步 安装Web Scraper、注册Web Scraper账号和Dropbox账号

Web Scraper是一个chrome插件,网上自行下载,csdn人都会,安装完会跳转页面,顺着页面注册账号即可,然后想要导出的话得链接Dropbox账号,up主5分钟就搞定了,这里就不多赘述咯

第二步 打开想要爬取的微博网站,直接开爬

这里有个小细节,如果你是在网页打开电脑端的微博如Sina Visitor Systemhttps://weibo.com/,网页内容极其复杂,估计很难爬,但是如果你打开的是移动版的网页如微博,一切就变得简单了。

1. 找到想爬取评论的网站后,打开F12调试器,点击Web Scraper  —— Create new sitemap ——Create Sitemap

其中,Sitemap name名称是项目名称,英文随意取,Start URL就是想要爬取的网站的URL,输入完点击Create Sitemap

2. 点击Add new selector

其中Id是你想给该行为取的名称或者所爬取的内容的名称,也是英文,Type的话选择Element Scroll down(也就是向下滚动,如果没有该动作,你只能爬取少量几个数据,加了该动作,它会自动往下滚动到底部才会停止,然后同时爬取所有加载的你选中的内容。)

必须勾选Multiple,因为字样才会批量爬取,一切就绪后点击select进行内容的勾选。

像我这样选中整个评论的框,点击它,然后再点下一个,你会发现匹配上了,然后点绿色的Done selecting

然后点保存

3. 点进我们的这个选择器,现在开始给数据分类了,例如名称,评论内容,评论时间等。

记得父级Item,默认的是对的

同样保存,这个数据就归类好了,接下来文本哪,时间哪也都是这个操作。

做完如图:可以点击Data view看一下数据对不(强烈建议全部做完再点,因为这样它会开始爬取)

4. 回到根目录开始爬取,点Start scraping就可以开始爬取了,建议爬大型网站时不赶时间的话改为5000毫秒 ,防拉黑

爬取完成后点refresh就可以看了

5. 导出

效果如图:

好了,以上就是全部内容了,感谢观看!!!

### 关于 Null 的概念及其在编程中的应用 Null 是一种特殊的值,在不同的上下文中具有特定的意义。例如,在 SQL 中,`NULL` 表示缺失的值或者未知的数据[^1];而在 C 或其他类似的编程语言中,`NULL` 则是一个指向空地址的指针常量,通常用来表示未分配的有效内存位置[^2]。 尽管 `NULL` 在数据库操作低级语言中有其独特的用途,但它与 Web Scraper 工具的选择并无直接关联。以下是关于如何构建或选择用于爬取图片的 Web Scraper 方法的一些指导: --- ### 使用 Python 实现简单的图片爬虫 Python 提供了许多强大的库来帮助开发者快速实现网页数据抓取功能。下面展示了一个基于 `requests` `BeautifulSoup` 库的小型图片爬虫脚本: ```python import requests from bs4 import BeautifulSoup import os def download_images(url, folder_path): try: response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') if not os.path.exists(folder_path): os.makedirs(folder_path) images = soup.find_all('img') for i, img in enumerate(images): src = img.get('src') or img.get('data-src') # 获取图片链接 if not src.startswith(('http', 'https')): continue image_data = requests.get(src).content file_name = f"{folder_path}/image_{i}.jpg" with open(file_name, 'wb') as handler: handler.write(image_data) except Exception as e: print(f"Error occurred: {e}") download_images("https://example.com", "./images") # 替换为目标网站URL本地存储路径 ``` 上述代码通过解析 HTML 页面找到所有的 `<img>` 标签并下载对应的资源文件到指定目录下。 --- ### 考虑更高级别的框架 如果需求更加复杂,则可以考虑采用 Scrapy 这样的全栈式爬虫开发框架。Scrapy 不仅支持多线程异步请求处理,还内置了多种中间件机制以便应对反爬策略等问题。以下是一段使用 Scrapy 创建项目的基础命令以及配置样例: #### 安装 Scrapy 并创建新项目 ```bash pip install scrapy scrapy startproject my_image_scraper cd my_image_scraper ``` #### 配置 Spider 文件 (my_image_scraper/spiders/image_spider.py) ```python import scrapy class ImageSpider(scrapy.Spider): name = "images" allowed_domains = ["example.com"] start_urls = ['https://example.com'] def parse(self, response): for img_url in response.css('img::attr(src)').extract(): yield {'image_urls': [img_url]} ``` 最后运行该 spider 即可获取目标站点上的所有图像链接列表: ```bash scrapy crawl images -o output.json ``` --- ### 注意事项 当设计任何类型的网络爬虫程序时,请务必遵循目标服务器设定的服务条款(TOS),尊重 Robots.txt 文件规定的内容访问权限,并合理控制请求频率以免给对方造成负担。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值