分享一个蛋白互作网站——String (一)

本文介绍了如何利用Stringdatabase预测基因与蛋白的相互作用。通过输入特定基因,如BIRC2,分析其可能的靶蛋白,并解释了不同颜色连线的含义。此外,还展示了如何下载和筛选数据,以及如何结合GEPIA进行共表达分析,以筛选出更紧密相关的基因。最后,提到了多基因的蛋白互作分析和软件可视化工具Cytoscape的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

筛选的差异基因或者想要研究的基因和哪些蛋白有相互作用呢?可以用到很多网站来进行预测,下面我们先讲最火的一个——String database.

百度搜索string database:点击第二个。

 点击search:

第一个分析是针对单个基因的,输入想要研究的基因,选择对应的物种,可以分析此基因可能结合的靶蛋白。 

例如:BIRC2这个基因

点击search:

 

continue:

 

 可以得到的是与这个基因直接结合的一些基因:

 不同的连线颜色对应不同的注释,例如黑色是co-expression,说明两基因之间是共表达的关系。

 点击more,可以得到更多的基因:

 可以对图片进行下载。

当然也可以下载tsv文件,基因之间的联系根据score来界定,分值越高可能关系越密切。

 

 这是下载后的文件,我们只关心BIRC2的话,第一列点击筛选,只选BIRC2:

 可以看到BIRC2与28个蛋白有相互作用,不过这只是个预测,具体还需要实验进行验证。

但是我们也可以进行进一步的筛选,例如共表达筛选。之前介绍过GEPIA网站里面的相似性分析:

分享分析TCGA的数据库——GEPIA(一)_Lijingxian教你学生信的博客-CSDN博客

我们就可以使用相似性分析两个基因在mRNA水平上面的相关性。这种在蛋白水平有相互作用,在mRNA水平也共表达的两个基因,很有可能关系最密切。

当然,这种蛋白互作可以使用一些软件进行可视化,比如cytoscape软件,我们以后再介绍。

回到最初界面,假如我们知道一条蛋白的氨基酸序列,也可以进行预测:

 

 结果显示这条序列在人类中没有相似的蛋白序列,因为他是大肠杆菌的。^_^

 

这些结果就预测出来了。

单基因分析通常用于基础实验,生物信息学分析通常是多基因分析蛋白互作。

比如生信筛选一堆基因,如何确定这些基因之间的关联,除了共表达以外,还可以蛋白互作。 

下一期介绍多个基因的蛋白互作分析。

### 蛋白质三维结构预测方法 蛋白质三维结构预测是生物信息学中的一个重要课题,旨在基于氨基酸序列推断出蛋白质的空间构象。当前主要采用两种策略来进行此任务:同源建模和从头计算。 #### 同源建模(Homology Modeling) 当数据库中有相似度较高的模板蛋白时,可以通过同源建模构建目标蛋白的三维结构。这种方法依赖于已知结构的蛋白为模板,通过比对序列找到对应关系并据此搭建未知结构。如果能找到合适的模板,则能获得较为可靠的模型[^1]。 #### 从头计算(De Novo Prediction) 对于缺乏近似模板的情况,则需依靠从头计算方式来推测可能存在的折叠形式。这类方法通常涉及复杂的物理化学原理模拟以及大量的计算资源消耗。随着计算机性能提升和技术进步,特别是深度学习的应用,使得即使没有现成模板也能较好地完成这项工[^2]。 #### 基于接触图谱的方法 另一个重要的方向是从给定的维线性序列出发,先预测哪些残基之间存在相用——即建立所谓的“接触图”。旦得到了精确的接触矩阵,就可以进步指导全局优化过程从而得到完整的立体图像。进化耦合分析(Evolutionary Coupling Analysis,ECA) 和机器学习都是用来识别这些潜在联系的有效工具。 ```python import numpy as np from scipy.spatial.distance import pdist, squareform def predict_contact_map(sequence): """ Predict contact map from protein sequence using machine learning model. Args: sequence (str): Protein sequence string Returns: ndarray: Contact probability matrix between residues """ # Placeholder function for actual ML-based prediction logic length = len(sequence) dist_matrix = squareform(pdist(np.random.rand(length, 3))) threshold = 8.0 # Ångstroms return (dist_matrix < threshold).astype(int) contact_map = predict_contact_map("ACDEFGHIKLMNPQRSTVWY") print(contact_map) ``` 上述代码片段展示了如何定义一个简单的函数`predict_contact_map()`用于生成虚拟的接触概率矩阵。实际应用中应替换为经过训练的真实模型以获取更准确的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

楷然教你学生信

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值